首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
汽车加油站共有两个加油窗口,现有三辆车A,B,C同时进入该加油站,假设A、B首先开始加油,当其中一辆车加油结束后立即开始第三辆车C加油,假设各辆车加油所需时间是相互独立且都服从参数为A的指数分布. 第三辆车C在加油站等待加油时间T的概率密度;
汽车加油站共有两个加油窗口,现有三辆车A,B,C同时进入该加油站,假设A、B首先开始加油,当其中一辆车加油结束后立即开始第三辆车C加油,假设各辆车加油所需时间是相互独立且都服从参数为A的指数分布. 第三辆车C在加油站等待加油时间T的概率密度;
admin
2017-10-25
71
问题
汽车加油站共有两个加油窗口,现有三辆车A,B,C同时进入该加油站,假设A、B首先开始加油,当其中一辆车加油结束后立即开始第三辆车C加油,假设各辆车加油所需时间是相互独立且都服从参数为A的指数分布.
第三辆车C在加油站等待加油时间T的概率密度;
选项
答案
首先我们需要求出T、S与各辆车加油时间X
i
(i=1,2,3)之间的关系,假设第i辆车加油时间为X
i
(i=1,2,3),则X
i
独立同分布,且概率密度都为 f
i
(x)=[*] 依题意,第三辆车C在加油站等待加油时间T=min(X
1
,X
2
),度过时间=等待时间+加油时间,即 S=T+X
3
=min(X
1
,X
2
)+X
3
. 由于T=min(X
1
,X
2
),其中X
1
与X
2
独立,所以T的分布函数 F
T
(t)=P{min(X
1
,X
2
)≤t}=1一P{min(X
1
,X
2
)>t}=1-P{X
1
>t}P{X
2
>t} =[*] T的密度函数f
T
(t)=[*] 即T=min(X
1
,X
2
)服从参数为2λ的指数分布.
解析
转载请注明原文地址:https://kaotiyun.com/show/4EX4777K
0
考研数学三
相关试题推荐
某厂家生产的一种产品同时在两个市场上销售,售价分别为p1,p2,销售量分别为q1,q2,需求函数分别为q1=24—0.2p1,q2=10—0.05p2,总成本函数为C=35+40(q1+q2),问厂家如何确定两个市场的销售价格,能使其获得总利润最大?最大利
设随机变量X服从参数为2的指数分布,证明:Y=1一e-2X在区间(0,1)上服从均匀分布.
设一设备在时间长度为t的时间内发生故障的次数N(t)~P(λt).(1)求相继两次故障之间时间间隔T的概率分布;(2)求设备在无故障工作8小时下,再无故障工作8小时的概率.
甲、乙两船驶向不能同时停靠两条船的码头,它们一天到达时间是等可能的,如果甲停靠,则停靠的时间为1小时,若乙停靠,则停靠的时间为2小时,求它们不需要等候的概率.
设总体X~N(μ,0.2),X1,X2,…,Xn+1为总体X的简单随机样本,记服从的分布.
设X~N(1,σ2),Y~N(2,σ2)为两个相互独立的总体,X1,X2,…,Xm与Y1,Y2,…,Yn分别为来自两个总体的简单样本,服从________分布.
(1)设系统由100个相互独立的部件组成。运行期间每个部件损坏的概率为0.1.至少有85个部件是完好时系统才能正常工作,求系统正常工作的概率。(2)如果上述系统由n个部件组成,至少有80%的部件完好时系统才能正常工作。问n至少多大才能使系统正常工作的概
设随机变量X在[2,5]上服从均匀分布,现在对X进行三次独立观测,试求至少有两次观测值大于3的概率。
设二维随机变量(X,Y)的概率密度为求:(I)(X,Y)的边缘概率密度fX(x),fY(y);(Ⅱ)Z=2X一Y的概率密度fZ(z).
随机试题
能产生LTA的细菌是
管电压在摄影条件选择中的意义,错误的是
保管特殊类型药材必须具有
在公共场所附近开挖沟槽时,应设防护设施,夜间设置照明灯和警示红灯。()
在某些情况下,被保险人患病或遭受意外伤害,最终是否残疾在短期内难以判定,为此保险公司规定一个定残期限,过了该期限后仍无明显好转征兆的,认定为全残。这种情况称为( )。
立面图的绘制中整个建筑的外轮廓尺寸线用( )线绘制。
信用风险管理委员会或类似机构可以考虑重新设定/调整限额的情况有()。
饮水时,应注意遵循少次多量的原则。
把对集体与个人的管理结合起来的班级管理是()。
A、Thecablecarride.B、GoldenGatePark.C、Fisherman’sWharf.D、Busesandstreetcars.A男士问女士最喜欢旧金山的什么,女士回答:“我也不知道,这很难说。我喜欢金门大桥
最新回复
(
0
)