首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,+∞)上可导,且当x>a时,fˊ(x)<k<0(k为常数).证明:如果f(a)>0,则方程f(x)=0在区间[a,a-f(a)/k]上有且仅有一个实根.
设f(x)在[a,+∞)上可导,且当x>a时,fˊ(x)<k<0(k为常数).证明:如果f(a)>0,则方程f(x)=0在区间[a,a-f(a)/k]上有且仅有一个实根.
admin
2020-07-31
42
问题
设f(x)在[a,+∞)上可导,且当x>a时,fˊ(x)<k<0(k为常数).证明:如果f(a)>0,则方程f(x)=0在区间[a,a-f(a)/k]上有且仅有一个实根.
选项
答案
先证根的存在性.由题设知,f(x)在[a,a-f(a)/k]上满足拉格朗日中值定理条件,故有 [*] 又因为f(a)>0,由零点定理知,方程f(x)=0在(a,a-f(a)/k)内有实根. 再由fˊ(x)<0(x>a)且f(x)在x≥a处连续知,f(x)在[a,a-f(a)/k]上单调减少,故方程f(x)=0在[a,a-f(a)/k]上最多有一个根. 综上所述,命题得证.
解析
先利用拉格朗日中值定理及零点定理证明根的存在性,再利用函数的单调性证明方程根的唯一性.
转载请注明原文地址:https://kaotiyun.com/show/4G84777K
0
考研数学二
相关试题推荐
设向量组α1,α2,α3线性无关,向量β1可由向量组α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有()
设n维行向量α=,矩阵A=E一αTα,B=E+2αTα,则AB=()
设函数f(x)=(ex一1)(e2x一2)…(enx一n),其中n为正整数,则f’(0)=()
若=()
设α1,α2为齐次线性方程组AX=0的基础解系,β1,β2为非齐次线性方程组AX=b的两个不同解,则方程组AX=b的通解为().
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2一α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为()
已知为某二元函数u(x,y)的全微分,则a等于()
设区域D={(x,y)|(x2+y2)2≤a2(x2-y2),a>0},则(x2+y3)dxdy=___.
(1999年试题,八)设函数f(x)在闭区间[一1,1]上具有三阶连续导数,且f(一1)=0,f(1)=1,f’(0)=0,证明:在开区间(一1,1)内至少存在一点ξ,使f’’(ξ)=3.
设f(x)=,则当x→0时,f(x)是g(x)的().
随机试题
下列行为中构成专利侵权的是()。
从造字法来看,“明”是_____字。
女,65岁,因头痛、右侧肢体无力7天入院。胸片:右肺可见圆形病灶,头部CT提示脑转移瘤,肿瘤周围脑水肿明显。本例瘤周水肿系
某研究者收集了2种疾病患者痰液内嗜酸性粒细胞的检查结果,整理成下表:若要比较2种疾病患者痰液内的嗜酸性粒细胞数是否有差别应选择
在下列关于财务管理“引导原则”的说法中,错误的是()。
关于老年人的权益,尤其是精神方面的保护,最近进行了立法,谈谈对这一问题的看法。
关于香港特别行政区的政府,说法正确的有()。
Whyare"HowTo"booksingreatdemandintheUnitedStates?
Whatistherelationshipbetweenthetwopersons?
A—thechiefcoachB—thechiefrefereeC—thedefenderD—centreforwardE—thesecon
最新回复
(
0
)