首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,+∞)上可导,且当x>a时,fˊ(x)<k<0(k为常数).证明:如果f(a)>0,则方程f(x)=0在区间[a,a-f(a)/k]上有且仅有一个实根.
设f(x)在[a,+∞)上可导,且当x>a时,fˊ(x)<k<0(k为常数).证明:如果f(a)>0,则方程f(x)=0在区间[a,a-f(a)/k]上有且仅有一个实根.
admin
2020-07-31
38
问题
设f(x)在[a,+∞)上可导,且当x>a时,fˊ(x)<k<0(k为常数).证明:如果f(a)>0,则方程f(x)=0在区间[a,a-f(a)/k]上有且仅有一个实根.
选项
答案
先证根的存在性.由题设知,f(x)在[a,a-f(a)/k]上满足拉格朗日中值定理条件,故有 [*] 又因为f(a)>0,由零点定理知,方程f(x)=0在(a,a-f(a)/k)内有实根. 再由fˊ(x)<0(x>a)且f(x)在x≥a处连续知,f(x)在[a,a-f(a)/k]上单调减少,故方程f(x)=0在[a,a-f(a)/k]上最多有一个根. 综上所述,命题得证.
解析
先利用拉格朗日中值定理及零点定理证明根的存在性,再利用函数的单调性证明方程根的唯一性.
转载请注明原文地址:https://kaotiyun.com/show/4G84777K
0
考研数学二
相关试题推荐
设A是4×5矩阵,且A的行向量组线性无关,则下列说法错误的是()
下列广义积分收敛的是().
计算二重积分
设函数f(x)具有一阶导数,下述结论中正确的是().
二元函数f(x,y)在点(x0,y0)处的下面4条性质:(Ⅰ)连续;(Ⅱ)两个偏导数连续;(Ⅲ)可微;(Ⅳ)两个偏导数存在,则().
[2013年]设函数f(x)=lnx+设数列{xn}满足lnxn+<l,证明xn存在,并求此极限.
设则=______。[img][/img]
设f(x)是二阶常系数非齐次线性微分方程y’’+Py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)-0的特解,则当x→0时,()
(Ⅰ)因f(χ,1)=χ2,故[*]又因f(2,y)=4+(y-1)arcsin[*],故[*](Ⅱ)按定义[*]类似可求[*]=0(或由χ,y的对称性得).
曲线y=x(1+arcsin)的斜渐近线方程为_______。
随机试题
采用断续分齿飞刀铣削蜗轮时,飞刀相当于蜗轮滚刀的一个刀齿,在切削过程中作()。
会计科目。
用自动血液分析仪时,首选的抗凝剂是
自航式、自带泥舱、一边航行一边挖泥的吸扬式挖泥船是()。
入境汽车的司售人员不用填写《入境检疫申明卡》和出示《国际旅行健康检查证明书》或《国际预防接种证书》。( )
没有在财务报表中反映但会减弱公司变现能力的因素有()。
下列各项中,会影响企业管理费用的有()。
下面关于公文写作基本要求中,属于内容范畴的是()。
结合材料回答问题:材料1中国古代思想家说:“夫君者舟也,庶人者水也,水可以载舟,亦可以覆舟。”“乐民之乐者,民亦乐其乐;忧民之忧者,民亦忧其忧。乐以天下,忧以天下,然而不王者,未之有也。”材料2毛泽东指出:“人民,只有人民,才是创造
(2013年上半年)某公司刚刚宣布下个月将要裁员,并且极可能包括张工项目团队里的一些成员。团队成员议论纷纷,已无心正常工作。张工告诉团队:“让我们冷静下来,回到工作上去,也许我们下个月的绩效可以保住我们的工作”。此时,张工采取的冲突解决技术是(49)。
最新回复
(
0
)