设f(x,y)二阶连续可偏导,f’x(x,1)=2x+1-sinx,f"xy(x,y)=2x+2y,且f(0,y)=2y+3,则f(x,y)=___。

admin2019-05-27  64

问题 设f(x,y)二阶连续可偏导,f’x(x,1)=2x+1-sinx,f"xy(x,y)=2x+2y,且f(0,y)=2y+3,则f(x,y)=___。

选项

答案x2y+xy2+cosx+2y+2

解析 由f"xy(x,y)=2x+2y得f’x(x,y)=2xy+y2+φ(x),
由f’x(x,1)=2x+1-sinx得φ(x)=-sinx,
即f’x(x,y)=2xy+y2-sinx,
由f’x(x,y)=2xy+y2-sinx得f(x,y)=x2y+xy2+cosx+h(y),
由f(0,y)=2y+3得h(y)=2y+2,
故f(x,y)=x2y+xy2+cosx+2y+2
转载请注明原文地址:https://kaotiyun.com/show/g0V4777K
0

最新回复(0)