首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2008年)设f(x)是周期为2的连续函数. (Ⅰ)证明对任意的实数t,有∫tt+2f(x)dx=∫02f(x)dx; (Ⅱ)证明G(x)=∫0x[2f(t)一∫tt+2f(s)ds]dt是周期为2的周期函数.
(2008年)设f(x)是周期为2的连续函数. (Ⅰ)证明对任意的实数t,有∫tt+2f(x)dx=∫02f(x)dx; (Ⅱ)证明G(x)=∫0x[2f(t)一∫tt+2f(s)ds]dt是周期为2的周期函数.
admin
2021-01-25
74
问题
(2008年)设f(x)是周期为2的连续函数.
(Ⅰ)证明对任意的实数t,有∫
t
t+2
f(x)dx=∫
0
2
f(x)dx;
(Ⅱ)证明G(x)=∫
0
x
[2f(t)一∫
t
t+2
f(s)ds]dt是周期为2的周期函数.
选项
答案
(Ⅰ)由积分的性质知,对任意的实数t, ∫
t
t+2
f(x)dx=∫
t
0
f(x)dx+∫
0
2
f(x)dx+∫
2
t+2
f(x)dx. 令s=x一2,则有 ∫
2
t+2
f(x)dx=∫
0
t
f(s+2)ds=∫
0
t
f(s)ds=一∫
t
0
f(x)dx 所以 ∫
t
t+2
f(x)dx=∫
t
0
f(x)dx+∫
0
2
f(x)dx-∫
t
0
f(x)dx=∫
0
2
f(x)dx (Ⅱ)由于∫
t
t+2
f(s)ds—∫
0
2
f(s)ds 记 ∫
0
2
f(s)ds=a 则 G(x)=2∫
0
x
f(t)dt—ax 因为对任意的x, G(x+2)一G(x)=2∫
0
x+2
f(t)dt—a(x+2)一2∫
0
x
f(t)dt+ax =2∫
x
x+2
f(t)dt一2a=2∫
0
2
f(t)dt一2a=0,所以,G(x)是周期为2的周期函数.
解析
转载请注明原文地址:https://kaotiyun.com/show/aMx4777K
0
考研数学三
相关试题推荐
从n阶行列式的展开式中任取一项,此项不含a11的概率为,则n=______.
设f(x)连续,且[f(x)+xf(xt)]clt=1,则f(x)=________.
任意3维向量都可用α1=(1,0,1)T,α2=(1,-2,3)T,α3=(a,1,2)T线性表出,则a=_______.
[*]其中C为任意常数
设离散型随机变量X的分布律为P{X=i}=pi+1,i=0,1,则p=____________。
设随机变量X和Y均服从B(1,),且D(X+Y)=1,则X与Y的相关系数ρ=_________。
已知X~且n维向量α1,α2,α3线性无关,则α1+α2,α2+2α3,Xα3+Yα1线性相关的概率为________。
设(X1,X2,…,Xn)(n≥2)为标准正态总体X的简单随机样本,则().
[2009年]设二次型f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3-2x2x3.若二次型f(x1,x2,x3)的规范形为y12+y22,求a的值.
f(x),φ(x)在点x=0的某邻域内连续,且当x→0时f(x)是φ(x)的高阶无穷小,则当x→0时的
随机试题
DNA分子上能被RNA聚合酶特异结合的部位叫作()
口有涩味如食生柿子的感觉属于
半夏除燥湿化痰,降逆止呕外,还有的功效是
根据商品房建设的需要,可以依照法律程序提前收回已出让的土地使用权,但在收回时应根据土地使用者利用土地的实际情况和土地的剩余年限给予适当赔偿。()
在工程经济分析中,以投资收益率指标作为主要决策依据,其可靠性较差的原因在于()。
根据《会计档案管理办法》的规定,会计档案的保管期限为永久定期两类。会计档案的定期保管期限最短为()
对于《普通高中语文课程标准(实验)》中提出的“表达与交流”方面的实施建议,下列理解不正确的是()。
为了解幼儿同伴交往特点,研究者深入幼儿所在的班级,详细记录其交往过程的语言和作等。这一研究方法属于()。
科学的可靠性还源于科学界具有公认的评价准则,所以能对理论取得一致意见,因此在比较成熟的科学领域,一个问题无论问哪一个科学家,都可以得到大致相同的答案。哲学、伦理学等学科没有公认的评价准则,同一个问题问不同的哲学家或伦理学家可能得到完全相反的结果,令人无所适
Foxesandfarmershavenevergotonwell.Thesesmalldog-likeanimalshavelongbeenaccusedofkillingfarmanimals.Theyare
最新回复
(
0
)