首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2008年)设f(x)是周期为2的连续函数. (Ⅰ)证明对任意的实数t,有∫tt+2f(x)dx=∫02f(x)dx; (Ⅱ)证明G(x)=∫0x[2f(t)一∫tt+2f(s)ds]dt是周期为2的周期函数.
(2008年)设f(x)是周期为2的连续函数. (Ⅰ)证明对任意的实数t,有∫tt+2f(x)dx=∫02f(x)dx; (Ⅱ)证明G(x)=∫0x[2f(t)一∫tt+2f(s)ds]dt是周期为2的周期函数.
admin
2021-01-25
46
问题
(2008年)设f(x)是周期为2的连续函数.
(Ⅰ)证明对任意的实数t,有∫
t
t+2
f(x)dx=∫
0
2
f(x)dx;
(Ⅱ)证明G(x)=∫
0
x
[2f(t)一∫
t
t+2
f(s)ds]dt是周期为2的周期函数.
选项
答案
(Ⅰ)由积分的性质知,对任意的实数t, ∫
t
t+2
f(x)dx=∫
t
0
f(x)dx+∫
0
2
f(x)dx+∫
2
t+2
f(x)dx. 令s=x一2,则有 ∫
2
t+2
f(x)dx=∫
0
t
f(s+2)ds=∫
0
t
f(s)ds=一∫
t
0
f(x)dx 所以 ∫
t
t+2
f(x)dx=∫
t
0
f(x)dx+∫
0
2
f(x)dx-∫
t
0
f(x)dx=∫
0
2
f(x)dx (Ⅱ)由于∫
t
t+2
f(s)ds—∫
0
2
f(s)ds 记 ∫
0
2
f(s)ds=a 则 G(x)=2∫
0
x
f(t)dt—ax 因为对任意的x, G(x+2)一G(x)=2∫
0
x+2
f(t)dt—a(x+2)一2∫
0
x
f(t)dt+ax =2∫
x
x+2
f(t)dt一2a=2∫
0
2
f(t)dt一2a=0,所以,G(x)是周期为2的周期函数.
解析
转载请注明原文地址:https://kaotiyun.com/show/aMx4777K
0
考研数学三
相关试题推荐
设A是三阶矩阵,且|A|=4,则=________.
函数f(x,y)=ln(x2+y2一1)的连续区域是________.
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
已知三阶方阵A,B满足关系式E+B=AB,A的三个特征值分别为3,﹣3,0,则|B﹣1+2E|=.
设函数F(r)当r>0时具有二阶连续导数,令则当x,y,z与t不全为零时=
计算积分dxdy,其中D是第一象限中以曲线y=与x轴为边界的无界区域.
设曲线方程为y=e-x(x≥0).(I)把曲线y=e-x(x≥0),x轴,y轴和直线x=ξ(ξ>0)所围成平面图形绕x轴旋转一周,得一旋转体,求此旋转体的体积V(ξ);求满足(Ⅱ)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求
设f(x)在[a,b]上二阶可导,且f(x)>0,下面不等式f(a)(b一a)<∫abf(x)dx<(b—a)成立的条件是()
设A,B,C是相互独立的随机事件,且0<P(C)<1,则下列给出的四对事件中不相互独立的是().
设f(x)在区间[0,1]上可积,当0≤x<y≤1时,|f(x)-f(y)|≤|arctanx-arctany|,又f(1)=0,证明:|∫01f(x)dx|≤ln2.
随机试题
Theworld’sfirstinstitutionofitskindwasfoundedin1753,basedonthecollectionslefttothenationbySirHansSloane,a
Wegotupearlythismorningand【C1】______alongwalkafterbreakfast.Wewalked【C2】______thebusinesssectionofthecity.Ito
Theappealoftheworldofworkisfirstitsfreedom.Thechildiscompelledtogotoschool:heis【21】ofauthority.Ashegrows
操作系统的基本功能是()。
某大型超市在2007年度缴纳的下列税种中,属于地方税务局征收的有()。
某企业为增值税一般纳税人,2017年4月从汽车制造厂购入小汽车一辆,取得税控增值税专用发票上注明价款350000元,增值税59500元;支付运输企业不含税运输费用8000元,取得运输企业开具的增值税专用发票,企业将该小汽车作为固定资产用于管理部门使用
求助者目前心理状态属于()。求助者的情绪症状包括()。
下列文种中属于法定公文的是()。
下列情形构成共同犯罪的是()。
A、Itisahousefullofcleverly-designeddevice.B、Itcanhelppeopleliveamucheasierlife.C、Itisthemostcomfortablehou
最新回复
(
0
)