首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2018年] 设函数f(x)在[0,1]上二阶可导,且∫01f(x)dx=0,则( ).
[2018年] 设函数f(x)在[0,1]上二阶可导,且∫01f(x)dx=0,则( ).
admin
2019-04-05
63
问题
[2018年] 设函数f(x)在[0,1]上二阶可导,且∫
0
1
f(x)dx=0,则( ).
选项
A、当f′(x)<0时,f(
)<0
B、当f″(x)<0时,f(
)<0
C、当f′(x)>0时,f(
)<0
D、当f″(x)>0时,f(
)<0
答案
D
解析
由条件可知,对函数f(x)在x=
点处按二阶泰勒展开可得
其中ξ在x与
之间,则
所以当f″(x)>0时,积分
dx>0,从而可推出f(
)1<0;
当f″(x)<0时,有f(
)>0,故选项(B)错误;取f(x)=一x+
,则f′(x)<0,f(
)=0,选项(A)错误;取f(x)=x一
,则f′(x)>0,f(
)=0,选项(C)错误.故选(D).
转载请注明原文地址:https://kaotiyun.com/show/4PV4777K
0
考研数学二
相关试题推荐
在上半平面求一条向上凹的曲线,其上任一点P(x,y)处的曲率等于此曲线在该点的法线段PQ长度的倒数(Q是法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
已知线性方程组(I)及线性方程组(Ⅱ)的基础解系ξ1=[一3,7,2,0]T,ξ2=[一1,一2,一0,1]T求方程组(I)和(Ⅱ)的公共解.
设α>0,β>0为任意正数,当x→+∞时将无穷小量:,e-x按从低阶到高阶的顺序排列.
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(A)=f(B)=g(a)=g(b)=0,试证:在开区间(a,b)内g(x)≠0;
设矩阵已知A有3个线性无关的特征向量,λ=2是A的二重特征值.试求可逆矩阵P,使得P一1AP为对角形矩阵.
某种飞机在机场降落时,为了减少滑行距离,在触地瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下来。现有一质量为9000kg的飞机,着陆时的水平速度为700km/h。经测试,减速伞打开后,飞机所受的阻力与飞机的速度成正比(比例系数为k=6.0×1
(2005年)设α1,α2,α3均为3维列向量,记矩阵A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3).如果|A|=1,那么|B|=_______.
(2002年试题,九)设0
(1998年试题,八)设y=f(x)是区间[0,1]上的任一非负连续函数.(1)试证存在xo∈(0,1),使得在区间[0,x]上以f(xo)为高的矩形面积,等于在区间[xo,1]上以y=f(x)为曲边的曲边梯形面积.(2)又设f(x)在区间(0,1)内可导
[2005年]设D={(x,y)∣x2+y2≤√2,x≥0,y≥0),[1+x2+y2]表示不超过1+x2+y2的最大整数,计算二重积分xy[1+x2+y2]dxdy.
随机试题
申请人范某向掌握政府信息的某省林业局申请获取所需信息时,只需提供所需信息的名称以方便被申请机构寻找即可,而无须说明使用信息的目的。除了依法应当保密的信息外,该省林业局应当提供相关信息。这体现了下列哪个原则?()
皮肤黏膜淋巴结综合征初起的病位是
气脱病变,常见()气逆病变,常见()
新生儿禁用的抗菌药物有()。
下列行为中,由原资质审批部门公告资质证书作废,收回证书,并处以1万元以上3万元以下的罚款的是()。
轨道工程的轨枕道钉锚固所采用的方法有()。
以下对于证券公司的叙述,错误的是( )。
李某2019年3月取得某上市的甲公司股票20000股,6月取得该上市公司派发的股息红利15000元,7月转让上市公司的股票6000股,取得所得10000元,上市公司应扣缴李某的个人所得税为()元。
以下程序段中与语句k=a>b?(b>c?1:0):0;功能等价的是______。
Idon’tsupposeyouareserious,_____?
最新回复
(
0
)