首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=在x=0处二阶导数存在,则常数a,b分别是
设f(x)=在x=0处二阶导数存在,则常数a,b分别是
admin
2020-12-10
28
问题
设f(x)=
在x=0处二阶导数存在,则常数a,b分别是
选项
A、a=1,b=1
B、a=1,b=
C、a=1,b=2
D、a=2,b=1
答案
B
解析
显然有
f(x)=
即f(x)在x=0处连续,先求出
f
-
′(0)=(x
2
+ax+1)′|
x=0
=a,
f
+
′(0)=(e
x
+bsinx
2
)′|
x=0
=(e
x
+2bxcosx
2
)|
x=0
=1.
要求f′(0)
f
+
′(0)=f
-
′(0)即a=1.此时
f
-
″(0)=(2x+1)′|
x=0
=2,
f
+
″(0)=(e
x
+2bxcosx
2
)′|
x=0
=(e
x
+2bcosx
2
—4bx
2
sinx
2
)|
x=0
=1+2b.
要求f″(0)
f
-
″(0)=f
+
″(0)即2=1+2b,b=
.
因此选B.
分析2:我们考虑分段函数
f(X)=
其中f
1
(x)和f
2
(x)均在x=x
0
邻域k阶可导,则f(x)在分界点x=x
0
有k阶导数的充要条件是f
1
(x)和f
2
(x)在x=x
0
处有相同的k阶泰勒公式:
f
1
(x)=f
2
(x)
=a
0
+a
1
(x—x
0
)+a
2
(x—x
0
)
2
+…+a
k
(x—x
0
)
k
+o((x—x
0
)
k
)(x→x
0
)
把这一结论用于本题:取x
0
=0.
f
1
(x)=1+ax+x
2
f
2
(x)=e
x
+bsinx
2
=1+x+
x
2
+o(x
2
)+b(x
2
+o(x
2
))
=1+x+(b+
)x
2
+o(x
2
).
因此f(x)在x=0处二阶可导
a=1,b+
=1,即a=1,b=
.
故应选B.
转载请注明原文地址:https://kaotiyun.com/show/4X84777K
0
考研数学二
相关试题推荐
设y=f(x)=求f(x)的极值点与极值.
设A=,B为三阶非零矩阵,为BX=0的解向量,且AX=a3有解。求常数a,b的值;
t=-7
设n阶矩阵A=(a1,a2,…an),B=(β1,β2,…βn),AB=(r1,r2,…rn),令向量组(I):a1,a2,…an;(II):β1,β2,…βn;(III):r1,r2,…rn,若向量组(III)线性相关,则().
设半径为1的球正好有一半沉入水中,球的比重为1,现将球从水中取出,要做多少功?(假设在球从水中取出的过程中水面的高度不变.)
讨论曲线y=4lnx+k与y=4x+ln4x的交点个数。
(96年)计算不定积分
已知曲面z=4一x2一y2上点P处的切平面平行于平面x+2y+z-1=0,则点P的坐标是()
设则
设z=,则点(0,0)().
随机试题
驾驶机动车怎样通过这个铁路道口?
现在的七斤,是七斤嫂和村人又都早给他相当的尊敬,相当的待遇了。到夏天,他们仍旧在自家门口的土场上吃饭;大家见了,都笑嘻嘻的招呼。九斤老太早已做过八十大寿,仍然不平而且康健。六斤的双丫角,已经变成一支大辫子了;伊虽然新近裹脚,却还能帮同七斤嫂做事,捧着十八个
下列最容易引起大咯血的疾病是()
A.药品生产过程的时间性B.药品使用的专属性C.需要用药的限时性D.用药后果的两重性E.质量控制的严格性药品作为特殊商品其不可替代作用及针对性强是指其特殊性的
下列各方中,通常不属于审计报告预期使用者的是()。
Bicyclesharingsystemsarealsoknownasyellowbicycleprograms,whitebicycleprograms,publicbikesorfreebikes.Theyare
“月落乌啼霜满天,江枫渔火对愁眠。姑苏城外寒山寺,夜半钟声到客船。”这首诗歌中的“愁”字是指()。
国家垄断资本主义是垄断资本主义的新发展,它对资本主义经济的发展产生的积极的作用包括()
识别下面的IP地址的类:169.5.0.0______。
Weallknowthatprogramminglanguageisthesystemofsyntax,grammar,andsymbolsorwordsusedtogiveinstructionstoacomp
最新回复
(
0
)