首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=在x=0处二阶导数存在,则常数a,b分别是
设f(x)=在x=0处二阶导数存在,则常数a,b分别是
admin
2020-12-10
41
问题
设f(x)=
在x=0处二阶导数存在,则常数a,b分别是
选项
A、a=1,b=1
B、a=1,b=
C、a=1,b=2
D、a=2,b=1
答案
B
解析
显然有
f(x)=
即f(x)在x=0处连续,先求出
f
-
′(0)=(x
2
+ax+1)′|
x=0
=a,
f
+
′(0)=(e
x
+bsinx
2
)′|
x=0
=(e
x
+2bxcosx
2
)|
x=0
=1.
要求f′(0)
f
+
′(0)=f
-
′(0)即a=1.此时
f
-
″(0)=(2x+1)′|
x=0
=2,
f
+
″(0)=(e
x
+2bxcosx
2
)′|
x=0
=(e
x
+2bcosx
2
—4bx
2
sinx
2
)|
x=0
=1+2b.
要求f″(0)
f
-
″(0)=f
+
″(0)即2=1+2b,b=
.
因此选B.
分析2:我们考虑分段函数
f(X)=
其中f
1
(x)和f
2
(x)均在x=x
0
邻域k阶可导,则f(x)在分界点x=x
0
有k阶导数的充要条件是f
1
(x)和f
2
(x)在x=x
0
处有相同的k阶泰勒公式:
f
1
(x)=f
2
(x)
=a
0
+a
1
(x—x
0
)+a
2
(x—x
0
)
2
+…+a
k
(x—x
0
)
k
+o((x—x
0
)
k
)(x→x
0
)
把这一结论用于本题:取x
0
=0.
f
1
(x)=1+ax+x
2
f
2
(x)=e
x
+bsinx
2
=1+x+
x
2
+o(x
2
)+b(x
2
+o(x
2
))
=1+x+(b+
)x
2
+o(x
2
).
因此f(x)在x=0处二阶可导
a=1,b+
=1,即a=1,b=
.
故应选B.
转载请注明原文地址:https://kaotiyun.com/show/4X84777K
0
考研数学二
相关试题推荐
设A=,讨论当a,b取何值时,方程组AX=b无解、有唯一解、有无数个解;有无数个解时求通解。
设y=f(x)=讨论f(x)在x=0处的连续性.
设三阶矩阵A的特征值为-1,-1,,其对应的线性无关的特征向量为a1,a2,a3,令P=(2a1+a2,a1-a2,2a3),则P-1A*P=().
求函数在约束条件下的最大值与最小值.[img][/img]
二阶常系数非齐次线性方程y’’一5y’+6y=2e2x的通解为y=________。
已知函数f(x)在区间[0,2]上可积,且满足则函数f(x)的解析式是
(15年)设A>0,D是由曲线段y=Asinx(0≤x≤)及直线y=0,所围成的平面区域,V1,V2分别表示D绕x轴与绕y轴旋转所成旋转体的体积.若V1=V2,求A的值.
(1999年试题,八)设函数f(x)在闭区间[一1,1]上具有三阶连续导数,且f(一1)=0,f(1)=1,f’(0)=0,证明:在开区间(一1,1)内至少存在一点ξ,使f’’(ξ)=3.
已知函数y=x3/(x一1)2,求:函数的增减区间及极值;
二次型f(x1,x2,x3)=5x12+5x22+cx32一2x1x2+6x1x3—6x2x3的秩为2。求参数c及此二次型对应矩阵的特征值;
随机试题
急性血源性骨髓炎的早期特点是
某热电公司的新建项目工程,占地面积6.5万平方米,建筑面积3.7万平方米,采用中温中压锅炉,单机容量30万千瓦,主要设备包括:循环流化床锅炉、抽凝式汽轮发电机组、钠离子交换器、湿式脱硫除尘器等。主要能源来自于燃煤,同时使用大量的水进行冷却。配套工程有除灰渣
关于国外运费下列表述正确的等式是( )。
下列各项资料中,应视同会计档案保管的有()。
下列关于振动、噪声测量的叙述中,正确的是()。
甲公司是一家体育用品生产企业。在进行行业分析时,该企业可用以区分战略群组的变量包括()。
导游人员的知识水平包括()
下面不属于使用视图的优点的是
CanLoudMusicCauseHearingImpairment(损伤)?Haveyouevergonetoaconcertandrealizedthatyourseatswererightnextto
Therateatwhichmanhasbeenstoringupusefulknowledgeabouthimselfandtheuniversehasbeenspiralingupwardfor10,000y
最新回复
(
0
)