首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,证明: r(A)=1且tr(A)≠0,证明A可相似对角化.
设A是n阶矩阵,证明: r(A)=1且tr(A)≠0,证明A可相似对角化.
admin
2019-05-27
51
问题
设A是n阶矩阵,证明:
r(A)=1且tr(A)≠0,证明A可相似对角化.
选项
答案
因为r(A)=1,所以存在非零列向量a,β,使得A=aβ
T
,显然tr(A)=(a,β),因为tr(A)≠0,所以(a,β)=k≠0. 令AX=λx,因为A
2
=kA,所以λ
2
X=kλX,或(λ
2
-kλ)X=0,注意到X≠0,所以矩阵A的特征值为λ=0或λ=k. 因为λ
1
+λ
2
+…+λ
n
=tr(A)=k,所以λ
1
=k,λ
2
=λ
3
=...=λ
n
=0,由r(0E-A)=r(A)=1,得A一定可以对角化。
解析
转载请注明原文地址:https://kaotiyun.com/show/PSV4777K
0
考研数学二
相关试题推荐
设A为三阶实对称矩阵,若存在正交矩阵Q,使得QTAQ=,又α=且A*α=α.(Ⅰ)求正交矩阵Q;(Ⅱ)求矩阵A.
设f(x)在[0,a]上一阶连续可导,f(0)=0,在(0,a)内二阶可导且f"(x)>0.证明:
设矩阵A=不可对角化,则a=________.
已知函数z=u(x,y)eax+by,且=0,若z=z(x,y)满足方程+z=0,则a=_______,b=________.
设f(x)在(0,+∞)内一阶连续可微,且对x∈(0,+∞)满足x∫01f(xt)dt=2∫0xf(t)dt+xf(x)+x3,又f(1)=0,求f(x).
设f(x,y)为连续函数,改变为极坐标的累次积分为=________.
求曲线y3+y2=2x在点(1,1)处的切线方程与法线方程.
设z=f(x-y+g(x-y-z)),其中f,g可微,求
设函数z(x,y)由方程F(y/x,z/x)=0确定,其中F为可微函数,且F’2≠0,则x=()
随机试题
sinusoid
城市内按居民居住地区设立的居民委员会与农村按居住地区设立的村民委员会一样,是我国最基层的一级政府。
传统的lP地址(IPv4)表示为一个_________位的无符号二进制数,通常用以圆点连接的四个十进制数表示。
中国共产党各方面建设的基础是()
A.詹姆斯一兰格理论B.坎农一巴德理论C.沙赫特和辛格理论D.评价一兴奋学说E.动力一分化理论情绪状态是认知过程、生理状态和环境因素在大脑皮质中整合的结果,该理论是
大黄酸具有的性质是
供求定理
期货公司应按照()原则传递客户交易指令。
资料一大河啤酒成功地在中国西部一个拥有200万人口的A市经营多年,不仅在该市取得了95%以上市场占有率的绝对垄断,而且在全省的市场占有率也达到了60%以上,成了该省啤酒业界名副其实的龙头老大。但是大河啤酒作为一个老的国有企业在营销人才和方法上都存在一
下列选项中,表述职业道德规范内容准确的是()。[河北省2008年9月三级真题]
最新回复
(
0
)