首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,证明: r(A)=1且tr(A)≠0,证明A可相似对角化.
设A是n阶矩阵,证明: r(A)=1且tr(A)≠0,证明A可相似对角化.
admin
2019-05-27
81
问题
设A是n阶矩阵,证明:
r(A)=1且tr(A)≠0,证明A可相似对角化.
选项
答案
因为r(A)=1,所以存在非零列向量a,β,使得A=aβ
T
,显然tr(A)=(a,β),因为tr(A)≠0,所以(a,β)=k≠0. 令AX=λx,因为A
2
=kA,所以λ
2
X=kλX,或(λ
2
-kλ)X=0,注意到X≠0,所以矩阵A的特征值为λ=0或λ=k. 因为λ
1
+λ
2
+…+λ
n
=tr(A)=k,所以λ
1
=k,λ
2
=λ
3
=...=λ
n
=0,由r(0E-A)=r(A)=1,得A一定可以对角化。
解析
转载请注明原文地址:https://kaotiyun.com/show/PSV4777K
0
考研数学二
相关试题推荐
设矩阵A=不可对角化,则a=________.
设四阶矩阵A=(α1,α2,α3,α4),其中α1,α2,α3线性无关,而α4=2α1-α2+α3,则r(A*)为().
曲线y=x2与y=所围成的图形绕x轴旋转一周的旋转体的体积为().
设A为三阶实对称矩阵,且存在正交矩阵又令B=A2+2E,求矩阵B.
设A为三阶实对称矩阵,α1=(m,-m,1)T是方程组AX=0的解,α2=(m,1,1-m)T是方程组(A+E)X=0的解,则m=________.
曲线y=的斜渐近线为________.
设函数f(x)在[0,2π]上连续可微,f’(x)≥0,证明:对任意正整数n,有
证明可微的必要条件:设z=f(x,y)在点(x0,y0)处可微,则fx’(x0,y0)与fy’(x0,y0)都存在,且dz|(x0,y0)=fy’(x0,y0)△x+fy’(x0,y0)△y。
设f(x,y)可微,f(1,2)=2,f’x(1,2)=3,f’y(1,2)=4,φ(x)=f(x,f(x,2x)),则φ’(1)=_______
设函数z(x,y)由方程F(y/x,z/x)=0确定,其中F为可微函数,且F’2≠0,则x=()
随机试题
具有四级结构的蛋白质特征是
血浆中起关键作用的缓冲对是
疾病监测采用的方法属于
关于一般抹灰施工及基层处理的说法,错误的是()。
我国雨凇最多的地方是()。
材料:刘某是一名初中二年级的学生,他特别喜欢罗纳尔多,于是把头发剃成足球式的形状。第二天来学校上课,刚走进教室,被老师看见,老师便对他说:“你的发式太怪了,把头发再剪剪,恢复正常了再来上课,顺便让你爸爸妈妈来学校一趟。”刘某回家后,将这件事告知家人,第二
一个人应该活得是自己并且干净顾城人的生命里有一种能量,它使你不安宁。说它是欲望也行,幻想也行,妄想也行,总之它不可能停下来,它需要一
A、 B、 C、 D、 A图形中的外层四边形顺时针旋转45。、中间四边形顺时针旋转90。、内部四边形逆时针旋转45。,得到后一个图形。由此应选择A。
根据下述材料。写一篇700字左右的论说文,题目自拟。中心是令人向往的地方,处于中心地带往往有诸多便利、机会和认同。当然也有人在中心地带迷失,最终边缘化。边缘是让人平静的地方,它的质朴和别样让生活其中的人受益良多,甚至还吸引中心的人们探寻它的魅力。
Weliveinatimewhen,morethaneverbeforeinhistory,peoplearemovingabout.
最新回复
(
0
)