首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,证明: r(A)=1且tr(A)≠0,证明A可相似对角化.
设A是n阶矩阵,证明: r(A)=1且tr(A)≠0,证明A可相似对角化.
admin
2019-05-27
58
问题
设A是n阶矩阵,证明:
r(A)=1且tr(A)≠0,证明A可相似对角化.
选项
答案
因为r(A)=1,所以存在非零列向量a,β,使得A=aβ
T
,显然tr(A)=(a,β),因为tr(A)≠0,所以(a,β)=k≠0. 令AX=λx,因为A
2
=kA,所以λ
2
X=kλX,或(λ
2
-kλ)X=0,注意到X≠0,所以矩阵A的特征值为λ=0或λ=k. 因为λ
1
+λ
2
+…+λ
n
=tr(A)=k,所以λ
1
=k,λ
2
=λ
3
=...=λ
n
=0,由r(0E-A)=r(A)=1,得A一定可以对角化。
解析
转载请注明原文地址:https://kaotiyun.com/show/PSV4777K
0
考研数学二
相关试题推荐
设A为三阶实对称矩阵,若存在正交矩阵Q,使得QTAQ=,又α=且A*α=α.(Ⅰ)求正交矩阵Q;(Ⅱ)求矩阵A.
对函数f(x)=(4-t)ln(1+t)dt().
设u=f(x+y,x-y,z)由z=∫x+zy+zp(t)dt确定z为x,y的函数,又f连续可偏导,p可导,且p(y+z)-p(x+z)-1≠0,求
设D为xOy平面上的有界闭区域,z=f(x,y)在D上连续,在D内可偏导且满足=-z,若f(x,y)在D内没有零点,则f(x,y)在D上().
设函数u=f(xz,yz,x)的所有二阶偏导数都连续,则=().
设函数f(x)(x≥0)连续可导,且f(0)=1.又已知曲线y=f(x)、x轴、y轴及过点(x,0)且垂直于x轴的直线所围成的图形的面积值与曲线y=f(x)在[0,x]上的一段弧长值相等,求f’(x).
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),f(a)=f(b)=1.证明:存在ξ,η∈(a,b),使得abeη-ξ=η2[f(η)-f’(η)].
设抛物线y=ax2+bx+c过点(0,0)及(1,2),其中a<0,确定a,b,c,使抛物线与x轴所围成的面积最小.
设可微函数f(x,y)在点(x0,y0)取得极小值,则下列结论正确的是()
设z=f(x,y),x=g(y,z)+φ(),其中f,g,φ在其定义域内均可微,求。
随机试题
当事人逾期不履行行政处罚决定的,作出处罚决定的行政机关可以采取每日按罚款数额的3%加处罚款。()
A、青霉素类B、戊巴比妥C、巴比妥D、妥布霉素E、药用炭与血浆蛋白结合率在20%~24%之间中度结合的药物是
每100ml口服补液盐中,碳酸氢钠的含量是()
此电脑租赁公司的广告属于()。电脑租赁公司不给学生姜远办理D型电脑的租赁手续的行为()。
非公开募集基金的募集环节的体现不包括()。
B注册会计师负责对K公司2印9年度财务报表进行审计。在测试K公司内部控制时,B注册会计师遇到下列事项,请代为做出正确的专业判断。B注册会计师应当考虑采取下列措施来增强某些审计程序不被管理层预见或事先了解()。
许慎在《说文解字》中对“形声”所下的定义是:_______,_______。
根据学习的定义,下列属于学习的现象是()
在下列情况中不能适用假释的有()。
设总体X服从正态分布N(0,σ2),而X1,X2,…,X15是取自总体X的简单随机样本,则服从____________分布,分布参数为____________.
最新回复
(
0
)