首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
对n元实二次型f=xTAx,其中x=(x1,x2,…,xn)T。试证f在条件x12+x22+…+xn2=1下的最大值恰好为矩阵A的最大特征值。
对n元实二次型f=xTAx,其中x=(x1,x2,…,xn)T。试证f在条件x12+x22+…+xn2=1下的最大值恰好为矩阵A的最大特征值。
admin
2019-06-28
87
问题
对n元实二次型f=x
T
Ax,其中x=(x
1
,x
2
,…,x
n
)
T
。试证f在条件x
1
2
+x
2
2
+…+x
n
2
=1下的最大值恰好为矩阵A的最大特征值。
选项
答案
实二次型f=x
T
Ax所对应的矩阵A为实对称矩阵,则存在正交矩阵P使 P
T
AP=[*], 其中λ
i
(i=1,2,…,n)是矩阵A的特征值。作线性变换x=Py,其中y=(y
1
,y
2
,…,y
n
)
T
,则 x
1
2
+x
2
2
+…+x
n
2
=x
T
x=y
T
(P
T
P)y=y
T
y=y
1
2
+y
2
2
+…+y
n
2
, f=x
T
Ax=y
T
(P
T
AP)y=λ
1
y
1
2
+λ
2
y
2
2
+…+λ
n
y
n
2
。 求f=x
T
Ax在条件x
T
x=1下的最大值可转化为求f=λ
1
y
1
2
+λ
2
y
2
2
+…+λ
n
y
n
2
在条件y
1
2
+y
2
2
+…+y
n
2
=1下的最大值。设C=max{λ
1
,λ
2
,…,λ
n
},则 f=λ
1
y
1
2
+λ
2
y
2
2
+…+λ
n
y
n
2
≤c(y
1
2
+y
2
2
+…+y
n
2
)=c, 上式取y=(1,0,…,0)
T
时,等号成立,此时厂取到最大值c。故在条件x
T
x=1下,f的最大值恰好为矩阵A的最大特征值。
解析
转载请注明原文地址:https://kaotiyun.com/show/eYV4777K
0
考研数学二
相关试题推荐
设函数f(x)=,则f(x)在(一∞,+∞)内()
设函数f(x,y)可微,且对任意x,y都有<0,则使不等式f(x1,y1)<f(x2,y2)成立的一个充分条件是()
23.证明:若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫23φ(x)dx,则至少存在一点ξ∈(1,3),使得φ’’(ξ)<0。
计算二重积分dxdy,其中D={(x,y)|0≤x≤1,0≤y≤1}。
设A为n阶矩阵(n≥2),A*为A的伴随矩阵,证明r(A*)=
过点(0,1)作曲线L:y=lnx的切线,切点为A,又L与x轴交于B点,区域D由L与直线AB围成。求区域D的面积及D绕x轴旋转一周所得旋转体的体积。
已知的一个特征向量。求参数a,b及特征向量p所对应的特征值;
设函数f(x)=若反常积分∫1+∞f(x)dx收敛,则()
设函数f(x)=∫-1xdt,则y=f(x)的反函数x=f-1(y)在y=0处的导数dx/dy|y=0=_______。
(07年)设f(x)是区间上的单调、可导函数,且满足∫0f(x)f-1(t)dt=其中f-1是f的反函数,求f(x).
随机试题
______是指一个网络能够利用各种基础技术,为指定的网络通信提供更好的服务能力,是网络自身预防拥塞和从拥塞中恢复的一种安全机制。
股票及其衍生工具交易的种类主要有
牙周病的活动性是指牙周破坏
下列不属于工程项目质量管理的特点的是()。
在教学过程中,你经常批评学生,而同事劝你不要批评学生,避免不必要的麻烦。面对同事的提醒。你会怎么做?
陈某经所在区工商局批准开办了一家书店,一日陈某所在地工商所人员康某要拿几本书回去看,陈某拒绝。康某说:“有人举报你卖淫秽书籍,我要对你罚款,你现在马上交。”陈某反驳说:“我从来没有卖过那种东西,不信你可以查。”康某说:“你如果不交,我就封你的店。”陈某遂交
设(X,Y)服从G={(x,y)|x2+y2≤1}上的均匀分布(图3-12),讨论X与Y的独立性与相关性.
Keplerreconciledastronomywithphysics,andsubstitutedforfictitiousclockworkauniverseofmaterialbodiesnotunlikethe
"Ido."ToAmericansthosetwowordscan-ygreatmeaning.Theycanevenchangeyourlife.Especiallyifyousaythematyourown
HasaRunawayGreenhouseEffectBegun?(Adapted)
最新回复
(
0
)