首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
对n元实二次型f=xTAx,其中x=(x1,x2,…,xn)T。试证f在条件x12+x22+…+xn2=1下的最大值恰好为矩阵A的最大特征值。
对n元实二次型f=xTAx,其中x=(x1,x2,…,xn)T。试证f在条件x12+x22+…+xn2=1下的最大值恰好为矩阵A的最大特征值。
admin
2019-06-28
80
问题
对n元实二次型f=x
T
Ax,其中x=(x
1
,x
2
,…,x
n
)
T
。试证f在条件x
1
2
+x
2
2
+…+x
n
2
=1下的最大值恰好为矩阵A的最大特征值。
选项
答案
实二次型f=x
T
Ax所对应的矩阵A为实对称矩阵,则存在正交矩阵P使 P
T
AP=[*], 其中λ
i
(i=1,2,…,n)是矩阵A的特征值。作线性变换x=Py,其中y=(y
1
,y
2
,…,y
n
)
T
,则 x
1
2
+x
2
2
+…+x
n
2
=x
T
x=y
T
(P
T
P)y=y
T
y=y
1
2
+y
2
2
+…+y
n
2
, f=x
T
Ax=y
T
(P
T
AP)y=λ
1
y
1
2
+λ
2
y
2
2
+…+λ
n
y
n
2
。 求f=x
T
Ax在条件x
T
x=1下的最大值可转化为求f=λ
1
y
1
2
+λ
2
y
2
2
+…+λ
n
y
n
2
在条件y
1
2
+y
2
2
+…+y
n
2
=1下的最大值。设C=max{λ
1
,λ
2
,…,λ
n
},则 f=λ
1
y
1
2
+λ
2
y
2
2
+…+λ
n
y
n
2
≤c(y
1
2
+y
2
2
+…+y
n
2
)=c, 上式取y=(1,0,…,0)
T
时,等号成立,此时厂取到最大值c。故在条件x
T
x=1下,f的最大值恰好为矩阵A的最大特征值。
解析
转载请注明原文地址:https://kaotiyun.com/show/eYV4777K
0
考研数学二
相关试题推荐
设f(x)为可导函数,且f’(x)严格单调增加,则F(x)=在(a,b]内()
如图1—5—1,C1和C2分别是y=(1+ex)和y=ex的图象,过点(0,1)的曲线C3是一单调增函数的图象。过C2上任一点M(x,y)分别作垂直于x轴和y轴的直线lx和ly。记C1,C2与lx所围图形的面积为S1(x);C2,C3与ly所围图形的面积为
(I)设f(x)在(一∞,+∞)上连续,证明f(x)是以l(>0)为周期的周期函数的充要条件是对任意a∈(一∞,+∞)恒有∫aa+lf(x)dx=∫0lf(x)dx。(Ⅱ)计算∫02πdx。
设e<a<b<e2,证明ln2b—ln2a>(b一a)。
设=1,且f’’(x)>0,证明f(x)>x(x≠0)。
已知曲线L的方程。过点(一1,0)引L的切线,求切点(x0,y0),并写出切线的方程;
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是()
设函数f(x)=lnx+(Ⅰ)求f(x)的最小值;(Ⅱ)设数列{xn}满足lnxn+<1,证明xn存在,并求此极限。
设实对称矩阵,求可逆矩阵P,使P-1AP为对角形矩阵,并计算行列式|A—E|的值.
设f(x)在x=a处n(n≥2)阶可导,且当x→a时f(x)是x-a的n阶无穷小,求证:f(x)的导函数f’(x)当→a时是x-a的a-1阶无穷小.
随机试题
旋后肌综合征患者被卡压的神经是
为细胞生命活动提供能量,被称为细胞内“能量工厂”的细胞器是()。
A.春B.夏C.长夏D.秋E.冬属于“水”的季节是
患者,男,50岁。1年来头晕、乏力,半月来加重伴心悸、纳差、恶心,血压增高为165/105mmHg,化验尿蛋白(++),沉渣RBC4~8/HP,血HB80g/L,血肌酐610μmol/L,BUN25mmol/L。该患者最不可能出现的电
某市和平区卫生局根据省卫生厅“于必要时,各级卫生主管部门可将自己的部分职权授予法人或其他社会组织行使”的文件精神,遂授权该区内红旗商场可以对在其商场内吐痰的行为处以罚款。顾客林某因吐痰被罚款对此不服欲提起诉讼,则应以谁为被告?()
项目监理机构的监理文件档案换发新版时,应由( )负责将原版本收回作废。
某股份有限公司已发行的股份总额为30000股,近些年经营良好,为鼓舞职工的工作热情,拟收购本公司的股份用于奖励优秀职工,以下是几个律师的意见,正确的是()。
股份公司中有大股东小股东,时常出现的情况是大股东担当起搜集信息、监督经理的责任,而小股东往往搭大股东的便车,这种情况可以用博弈理论中的()来解释。
评估()的重要途径是了解受训者对培训项目的反应。
公安工作的对象决定了公安工作具有打击与保护的双重特点。()
最新回复
(
0
)