首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f”(x)|≤b,其中a,b为常数,证明:对任意0<x<1有|f’(x)|≤2a+.
设函数f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f”(x)|≤b,其中a,b为常数,证明:对任意0<x<1有|f’(x)|≤2a+.
admin
2022-06-04
74
问题
设函数f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f”(x)|≤b,其中a,b为常数,证明:对任意0<x<1有|f’(x)|≤2a+
.
选项
答案
由泰勒公式可得,对任意x∈[0,1],有 f(0)=f(x)-f’(x)x+[*]f”(ξ
1
)x
2
, 0<ξ
1
<x f(1)=f(x)+f’(x)(1-x)+[*]f”(ξ
2
)(1-x)
2
,x<ξ
2
<1 于是 f’(x)=f(1)-f(0)+[*][f”(ξ
1
)x
2
-f”(ξ
2
)(1-x)
2
] 故|f’(x)|≤|f(1)|+|f(0)|+[*]|f”(ξ
1
)x
2
-f”(ξ
2
)(1-x)
2
|≤2a+[*]b[x
2
+(1-x)
2
], 当0<x<1时,x
2
+(1-x)
2
≤1,所以对任意0<x<1,有|f’(x)|≤2a+[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/4XR4777K
0
考研数学三
相关试题推荐
设某商品一周的需求量是X,其概率密度为若各周对该商品的需要相互独立.以Uk表示前k周的需求量,求U2和U3的概率密度f2(u)和f3(u);
对于一切实数t,函数f(t)为连续的正函数且可导,又∫(—t)=f(t),设求出使g(x)取得最小值的x;
设f(x,y)在(0,0)处连续,且,则f(x,y)在(0,0)处().
设α1,α2,α3,α4是四维非零列向量,A=(α1,α2,α3,α4),A*为A的伴随矩阵,又知方程组Ax=0的基础解系为(1,0,2,0)T,则方程组A*x=0基础解系为().
设A,B为n阶矩阵.(1)是否有AB~BA;(2)若A有特征值1,2,…,n,证明:AB~BA.
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为ξ1=,求Anβ.
设X1,X2分别为A的属于不同特征值λ1,λ2的特征向量.证明:X1+X2不是A的特征向量.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
证明不等式:xarctanx≥ln(1+x2).
设随机变量X与Y相互独立,且X在区间(0,1)上服从均匀分布,Y的概率分布为记的分布函数,则函数FZ(z)的间断点的个数为()
随机试题
下列各项中,能作为短期偿债能力辅助指标的是
原发性胆汁淤积性肝硬化最常见的早期症状为
2012年,某市受理专利申请量82682件,比上年增长3.1%。其中,发明专利37139件,增长15.5%。专利授权量51508件,增长7.4%。其中,发明专利11379件,增长24.2%。2012年全市有高新技术企业4312家,技术先进型服务企业281家
根据《企业会计准则第15号——建造合同》,下列费用中,不应计入工程成本的是()。
()接受承运人的委托,代理与船舶有关的一切业务的人。
可持续增长率可以表达为()。
养花专业户张某为防止花被偷,在花房周围私拉电网。一日晚,李某偷花不慎触电,经送医院抢救,不治身亡。张某对这种结果的主观心理态度是()。
细胞凋亡和程序性坏死的主要区别包括()。
犯罪的主观方面包括()。
Giventhechoice,youngerprofessionalsaremostinterestedinworkingattechcompanieslikeAppleandgovernmentagencieslike
最新回复
(
0
)