首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设在区间[a,b]上,f(x)>0,f’(x)0,令 则( ).
设在区间[a,b]上,f(x)>0,f’(x)0,令 则( ).
admin
2019-08-26
48
问题
设在区间[a,b]上,f(x)>0,f’(x)<0,f’’(x)>0,令
则( ).
选项
A、S
1
<S
2
<S
3
B、S
2
<S
1
<S
3
C、S
3
<S
1
<S
2
D、S
2
<S
3
<S
1
答案
B
解析
【思路探索】首先判定函数的单调性及凹凸性,然后用定积分的不等式性质或几何意义即得结果.
解法一:由f’(x)<0,f’’(x)>0知曲线y=f (x)在[a,b]上单调减少且是凹的,于是有
于是
所以,S
2
<S
1
<S
3
.
故应选(B).
解法二:利用定积分的几何意义
又因矩形ABCE?曲边梯形ABCD?直边梯形ABCD,所以S
2
<S
1
<S
3
.
故应选(B).
转载请注明原文地址:https://kaotiyun.com/show/UvJ4777K
0
考研数学三
相关试题推荐
(2010年)设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解,若常λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则()
(1989年)假设函数f(x)在[a,b]上连续.在(a,b)内可导,且f’(x)≤0.记证明在(a,b)内F’(x)≤0.
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:Ⅰ)存在η∈(a,b),使得f(η)=g(η);Ⅱ)存在ξ∈(a,b),使得f’’(ξ)
(2011年)证明方程恰有两个实根.
(2012年)证明:
设向量组α1=(a,2,10)T,α2=(-2,1,5)T,α3=(-1,1,4))T,β=(1,b,c)T.试问:当a,b,c满足什么条件时(1)β可由α1,α2,α3线性表出,且表示唯一?(2)β不能由α1,α2,α3线性表出?(3)β可由α1
已知向量组α1,α2,…,αs(s≥2)线性无关.设β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1.试讨论向量组β1,β2,…,βs的线性相关性.
设函数f(x)在x=2的某邻域内可导,且f’(x)=ef(x),f(2)=1,则f"’(2)=________。
已知f(x)在x=0的某个邻域内连续,且f(0)=0,=2,则在点x=0处f(x)()
随机试题
某女,40岁。呃逆、嗳气1周余。因与家人吵架生气后,呃声不断,嗳气则舒,胃脘痞塞,时有嘈杂反酸,急躁易怒,多梦,大便不畅;舌红,苔薄黄腻,脉弦。既往史:乙型肝炎5年,十二指肠溃疡2年。医师处方如下:旋覆花9g,吴茱萸5g,黄连5g,枳实9g,紫苏梗
乳糖不耐症患者最适合食用的奶制品是
《医疗用毒性药品管理办法》规定,医疗单位调配毒性药品,每次处方剂量不得超过
女,45岁。阵发性心悸半年,时有胸闷,下肢水肿5天来门诊。心电图示窦性心律,心率64次/分,PR间期0.24秒,伴完全性右束支传导阻滞,诊断为扩张型心肌病,心功能不全。入院后予以洋地黄、利尿剂和扩血管药物治疗。第4天突然神志不清,抽搐,听诊心音消失,血压为
在下列各项中,符合代理特征的是()。
委托人
投资:回报
一个城市的现代化.并非仅仅表现为漂亮的GDP数字、热闹的车水马龙、鳞次栉比的高楼大厦,更在于那些看不到的诸多________。城市的下水道和地铁站的扶梯,都是容易被管理者忽视的地方,虽然平时并不起眼,可往往________着城市管理者的真实水平。填入划横线
旅游者王某参加某旅行社组织的旅游活动,支付了旅游综合服务费人民币200元。由于旅行社提供的服务属欺诈,根据《消费者权益保护法》规定,旅行社应当向旅游者赔偿人民币共()元。
Japanandthenewlyindustrializedcountriesarepassinglabor-intensivesectsasgarment-makingovertolessdevelopednations
最新回复
(
0
)