首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若r(Am×n)=n,则对任何Bn×p,有r(AB)=r(B).即用列满秩矩阵A(A的秩等于A的列数,则称A为列满秩矩阵)左乘B,不改变矩阵的秩.
若r(Am×n)=n,则对任何Bn×p,有r(AB)=r(B).即用列满秩矩阵A(A的秩等于A的列数,则称A为列满秩矩阵)左乘B,不改变矩阵的秩.
admin
2018-07-27
30
问题
若r(A
m×n
)=n,则对任何B
n×p
,有r(AB)=r(B).即用列满秩矩阵A(A的秩等于A的列数,则称A为列满秩矩阵)左乘B,不改变矩阵的秩.
选项
答案
若Bx=0,两端左乘A,得ABx=0,这说明方程组Bx=0的解都是方程组ABx=0的解;反之,若ABx=0,即A(Bx)=0,因A的列向量组线性无关,故方程组Ax=0只有零解,因此由A(Bx)=0得Bx=0,这说明ABx=0的解都是Bx=0的解.以上两方面说明方程组Bx=0与方程组ABx=0同解,由r(A)=r(B)即得r(AB)=r(B).
解析
转载请注明原文地址:https://kaotiyun.com/show/4XW4777K
0
考研数学三
相关试题推荐
设f(x)在(-∞,+∞)连续,存在极限.证明:(Ⅰ)设A<B,则对∈(-∞,+∞),使得f(ξ)=μ;(Ⅱ)f(x)在(-∞,+∞)上有界.
求下列微分方程的通解:(Ⅰ)y’’-3y’=2-6x;(Ⅱ)y’’+y=2cosx;(Ⅲ)y’’+4y’+5y=40cos3x.
求微分方程(x-4)y4dx-x3(y2-3)dy=0的通解.
证明n维列向量α1,α2,…,αn线性无关的充要条件是
已知β可用α1,α2,…,αm线性表示,但不能用α1,α2,…,αm-1表出,试判断:(Ⅰ)αm能否用α1,α2,…,αm-1,β线性表示;(Ⅱ)αm能否用α1,α2,…,αm-1线性表示,并说明理由.
已知α1=(1,-1,1)T,α2=(1,t,-1)T,α3=(t,1,2)T,β=(4,t2,-4)T,若β可以由α1,α2,α3线性表出且表示法不唯一,求t及β的表达式.
甲盒内有3个白球与2个黑球,从中任取3个球放入空盒乙中,然后从乙盒内任取2个球放入空盒丙中,最后从丙盒内再任取1个球,试求:(Ⅰ)从丙盒内取出的是白球的概率;(Ⅱ)若从丙盒内取到白球,当初从甲盒内取到3个白球的概率.
已知α1=(a,a,a)T,α2=(-a,a,b)T,α3=(-a,-a,-b)T线性相关,则a,b满足关系式_______.
用泰勒公式确定下列无穷小量当x→0时关于x的无穷小阶数:
设n阶矩阵A=证明:行列式|A|=(n+1)an。
随机试题
血液的组成是()
纠正低钾血症时必须注意
下列可向地方各级人民代表大会提出议案的主体中,正确的是:()
甲、乙为劫取财物将在河边散步的丙杀死,当场取得丙随身携带的现金2000余元。甲、乙随后从丙携带的名片上得知丙是某公司总经理。两人经谋划后,按名片上的电话给丙的妻子丁打电话,声称丙已被绑架,丁必须于次日中午12点将10万元现金放在某处,否则杀害丙。丁立即报警
根据有关规定,可以不征或免征土地增值税的有( )。
2016年,全国民间固定资产投资365219亿元,比上年名义增长3.2%,增速比1-11月份提高0.1个百分点。民间固定资产投资占全国固定资产投资的比重为61.2%,比1-11月份降低0.3个百分点,比上年降低3个百分点。分地区看,
设A、B、C三个事件两两独立,则A、B、C相互独立的充分必要条件是()
基于经济利己主义的环保制度不可取——2010年英译汉及详解Onebasicweaknessinaconservationsystembasedwhollyoneconomicmotivesisthatmostmembers
下列不属于VisualBasic特点的是
Animportantpartofpolicestrategy,rapidpoliceresponseisseenbypoliceofficersandthepublicalikeasofferingtremendo
最新回复
(
0
)