首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f’(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f’(a)f’(b)>0,试证:至少存在一点ξ∈(a,b),使得f’’(ξ)=0.
设f’(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f’(a)f’(b)>0,试证:至少存在一点ξ∈(a,b),使得f’’(ξ)=0.
admin
2017-05-31
17
问题
设f’(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f’(a)f’(b)>0,试证:至少存在一点ξ∈(a,b),使得f’’(ξ)=0.
选项
答案
不妨设f’(a)>0,则由f’(a)f’(b)>0可知,f’(b)>0.由导数的定义: [*] f(x
2
)<f(b)<f(a), 于是有f(x
2
)<f(a)<f(x
1
).由介值定理,存在点η∈(x
1
,x
2
),使得f(η)=f(a).由洛尔定理可知 存在点ξ
1
∈(x
1
,η),使得f(ξ
1
)=0, 存在点ξ
2
∈(η,x
2
),使得f(ξ
2
)=0. 所以,f’(x)在[ξ
1
,ξ
2
]上连续,在(ξ
1
,ξ
2
)内可导,由洛尔定理,存在点ξ∈(ξ
1
,ξ
2
)[*](a,b),使得f’’(ξ)=0.
解析
证f’’(ξ)=0的关键是找出使得f’(ξ
1
)=f’(ξ
2
)=0的区间[ξ
1
,ξ
2
].由f’(a)f’(b)>0及导数的定义、介值定理和洛尔定理便可找到这样的ξ
1
和ξ
2
.
转载请注明原文地址:https://kaotiyun.com/show/4Yu4777K
0
考研数学一
相关试题推荐
A、是奇函数,非偶函数B、是偶函数,非奇函数C、既非奇函数,又非偶函数D、既是奇函数,又是偶函数D
0
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y"+P(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是
假设:(1)函数y=f(x)(0≤x<+∞)满足条件f(0)=0和0≤f(x)≤ex-1;(2)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别相交于点P1和P2;(3)曲线y=f(x)、直线MN与x轴所围封闭图形的面积S恒等于线段P1P2的
设总体X的概率密度为p(x,λ)=,其中λ>0为未知参数,α>0是已知常数,试根据来自总体X的简单随机样本X1,X2,…,X,求λ的最大似然估计量λ.
设函数Y=y(x)由方程ylny-x+y=0确定,判断曲线y=y(x)在点(1,1)附近的凹凸性.
计算二重积分,其中D={(x,y)|0≤x≤1,0≤y≤1}.
设A,B为同阶方阵,(Ⅰ)如果A,B相似,试证A,B的特征多项式相等.(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立.(Ⅲ)当A,B均实对称矩阵时,试证(Ⅰ)的逆命题成立.
已知曲线y=x3-3a2x+b与x轴相切,则b2可以通过a表示为b2=________.
随机试题
经济条件是行政组织赖以生存和发展的物质基础。()
A、由具有初级技术职务任职资格的药学、临床医学、医院感染管理和医疗行政管理等方面的专家组成B、由具有初级以上技术职务任职资格的药学、临床医学、医院感染管理和医疗行政管理等方面的专家组成C、由具有高级技术职务任职资格的药学、临床医学
关于排卵的机制的叙述下列哪些是正确的()
下列哪一项并发症是糖尿病所特有的
白蛋白来源于
根据消费税法律制度的规定,下列各项中,应按照“高档化妆品”税目计缴消费税的有()。
根据公司法律制度的规定,下列情形中,公司继续存续会使股东利益受到重大损失,通过其他途径不能解决,单独或者合并持有公司全部股东表决权10%以上的股东,可以提起解散公司诉讼的有()。
对39种食物中是否含有甲、乙、丙三种维生素进行调查,结果如下:含甲的有17种,含乙的有18种,含丙的有15种,含甲、乙的有7种,含甲、丙的有6种,含乙、丙的有9种,三种维生素都不含的有7种,则三种维生素都含的有多少种?
将函数展开成x的幂级数,并指出其收敛区间.
Howmanytypesofdriverscouldtheself-drivingcardistinguishnow?
最新回复
(
0
)