首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f’(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f’(a)f’(b)>0,试证:至少存在一点ξ∈(a,b),使得f’’(ξ)=0.
设f’(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f’(a)f’(b)>0,试证:至少存在一点ξ∈(a,b),使得f’’(ξ)=0.
admin
2017-05-31
44
问题
设f’(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f’(a)f’(b)>0,试证:至少存在一点ξ∈(a,b),使得f’’(ξ)=0.
选项
答案
不妨设f’(a)>0,则由f’(a)f’(b)>0可知,f’(b)>0.由导数的定义: [*] f(x
2
)<f(b)<f(a), 于是有f(x
2
)<f(a)<f(x
1
).由介值定理,存在点η∈(x
1
,x
2
),使得f(η)=f(a).由洛尔定理可知 存在点ξ
1
∈(x
1
,η),使得f(ξ
1
)=0, 存在点ξ
2
∈(η,x
2
),使得f(ξ
2
)=0. 所以,f’(x)在[ξ
1
,ξ
2
]上连续,在(ξ
1
,ξ
2
)内可导,由洛尔定理,存在点ξ∈(ξ
1
,ξ
2
)[*](a,b),使得f’’(ξ)=0.
解析
证f’’(ξ)=0的关键是找出使得f’(ξ
1
)=f’(ξ
2
)=0的区间[ξ
1
,ξ
2
].由f’(a)f’(b)>0及导数的定义、介值定理和洛尔定理便可找到这样的ξ
1
和ξ
2
.
转载请注明原文地址:https://kaotiyun.com/show/4Yu4777K
0
考研数学一
相关试题推荐
[*]
因E(2X2-X1)=2E(X2)-E(X1)=2μ-μ=μ[*]
设函数f(x)在(-∞,+∞)内单调有界,{xn}为数列,下列命题正确的是
设(x0,y0)是抛物线y=ax2+bx+c上的一点,若在该点的切线过原点,则系数应满足的关系是_______.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:存在η∈(1/2,1),使f(η)=η;
设二元函数z=xex+y+(x+1)ln(1+y),则dz丨(1,0)=___________.
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2则α1,A(α1+α2)线性无关的充分必要条件是
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设总体X的概率密度为p(x,λ)=,其中λ>0为未知参数,α>0是已知常数,试根据来自总体X的简单随机样本X1,X2,…,X,求λ的最大似然估计量λ.
由题设,需先求出f(x)的解析表达式,再求不定积分.[*]
随机试题
数据字典表达的是【】
医疗机构工作人员上岗工作,必须佩戴
牛心脏检查的首选方法是()。[2010年真题]
A.晴明、睛俞、太阳B.耳尖、山根、三江C.关元俞、六脉、健胃D.苏气、颈脉、肺俞E.雁翅、百会、气门治疗牛中暑、感冒、腹痛宜选
防火防爆措施是综合性的措施,包括选用合理的电气设备,保持必要的防火间距,电气设备正常运行并有良好的通风,采用耐火设施,有完善的继电保护装置等技术措施。平面布置中,室外变、配电装置距其他建筑物不应小于()m。
解放以来,广西第一任政府主席是()。
根据《全国人口普查条例》和《国务院关于开展第六次全国人口普查的通知》,我国以2010年11月1日零时为标准时点进行了第六次全国人口普查。目前我国全国总人口为1370536875人。其中普查登记的大陆31个省、自治区、直辖市和现役军人的人口共133
在一次对全省小煤矿的安全检查后,甲、乙、丙三个安检人员有如下结论:甲:有小煤矿存在安全隐患。乙:有小煤矿不存在安全隐患。丙:大运和宏通两个小煤矿不存在安全隐患。如果上述三个结论只有一个正确,则以下哪项一定为真?
某公司原有一个C类IP的局域网,现单位组织机构调整,分为5个部门,要求采用子网划分的方式将原有网络分为5个子网,则每个子网中最多可容纳主机数量为_____________。
Answerthequestionsbelow.ChooseNOMORETHANTHREEWORDSfromthepassageforeachanswer.Writeyouranswersinboxes38-40
最新回复
(
0
)