首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f’(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f’(a)f’(b)>0,试证:至少存在一点ξ∈(a,b),使得f’’(ξ)=0.
设f’(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f’(a)f’(b)>0,试证:至少存在一点ξ∈(a,b),使得f’’(ξ)=0.
admin
2017-05-31
35
问题
设f’(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f’(a)f’(b)>0,试证:至少存在一点ξ∈(a,b),使得f’’(ξ)=0.
选项
答案
不妨设f’(a)>0,则由f’(a)f’(b)>0可知,f’(b)>0.由导数的定义: [*] f(x
2
)<f(b)<f(a), 于是有f(x
2
)<f(a)<f(x
1
).由介值定理,存在点η∈(x
1
,x
2
),使得f(η)=f(a).由洛尔定理可知 存在点ξ
1
∈(x
1
,η),使得f(ξ
1
)=0, 存在点ξ
2
∈(η,x
2
),使得f(ξ
2
)=0. 所以,f’(x)在[ξ
1
,ξ
2
]上连续,在(ξ
1
,ξ
2
)内可导,由洛尔定理,存在点ξ∈(ξ
1
,ξ
2
)[*](a,b),使得f’’(ξ)=0.
解析
证f’’(ξ)=0的关键是找出使得f’(ξ
1
)=f’(ξ
2
)=0的区间[ξ
1
,ξ
2
].由f’(a)f’(b)>0及导数的定义、介值定理和洛尔定理便可找到这样的ξ
1
和ξ
2
.
转载请注明原文地址:https://kaotiyun.com/show/4Yu4777K
0
考研数学一
相关试题推荐
设函数f(x)在(-∞,+∞)内单调有界,{xn}为数列,下列命题正确的是
设函数F(X)在[0,+∞]上连续,且f(0)>0,已知经在[0,x]上的平均值等于f(0)与f(x)的几何平均值,求f(x).
因f(x)是以2π为周期的函数,故S(2π)=s(0),而x=0是f(x)的间断[*]
设f(x)是奇函数,f(1)=a,且f(x+2)-f(x)=f(2).(1)试用a表示,f(2)与f(5);(2)问a取何值时,f(x)以2为周期.
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y"+P(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是
设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2则α1,A(α1+α2)线性无关的充分必要条件是
设函数f(x,y)连续,则二次积分等于().
设L是不经过点(2,0),(-2,0)的分段光滑简单正向闭曲线,就L的不同情形计算
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
随机试题
下列关于Word2010文件的保存说法中,错误的是()。
恶热、汗出、口渴、疲乏、尿黄,舌红、苔黄,脉虚数,属于()
升药的功效是
塔吊安装方案应由()单位编写。
下列有关态度与行为的关系描述不正确的是()。
不同法的形式具有不同的效力等级,下列各项中,效力低于地方性法规的是()。
某商品分别在购物网站和实体店进行销售,利润率都是100%。为了促销,网站推出该商品买二赠一活动,实体店在提高一定价钱后以六折销售,结果两者利润仍然相同。问实体店提高的价钱占该商品原来售价的比例是多少?
学与教相互作用的过程是由__________、____________和评价/反思过程三种活动过程交织在一起的。
某学校有一批树苗需要栽种在学院路两旁,每隔5米栽一棵。已知每个学生栽4棵树,则有202棵树没有人栽;每个学生栽5棵树,则有348人可以少栽一棵。问学院路共有多少米?
以下哪项列出的四名队员可以共同参加比赛?()如果H不参加比赛,则参加比赛的队员必然包括以下哪两名?()
最新回复
(
0
)