首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs,β为n维向量,则下列结论正确的是( ).
设α1,α2,…,αs,β为n维向量,则下列结论正确的是( ).
admin
2021-07-27
32
问题
设α
1
,α
2
,…,α
s
,β为n维向量,则下列结论正确的是( ).
选项
A、若β不能被向量组α
1
,α
2
,…,α
s
线性表示,则α
1
,α
2
,…,α
s
必线性无关
B、若向量组α
1
,α
2
,…,α
s
,β线性相关,则β可以被向量组α
1
,α
2
,…,α
s
线性表示
C、β可以被向量组α
1
,α
2
,…,α
s
的部分向量线性表示,则β可以被α
1
,α
2
,…,α
s
线性表示
D、β可以被向量组α
1
,α
2
,…,α
s
线性表示,则β可以被其任何一个部分向量组线性表示
答案
C
解析
①若β不能被向量组α
1
,α
2
,…,α
s
线性表示,则r(α
1
,α
2
,…,α
s
,β)=r(α
1
,α
2
,…,α
s
)+1,至于α
1
,α
2
,…,α
s
,β是否线性无关,取决于α
1
,α
2
,…,α
s
是否线性无关,由于题中未明示,故(A)不正确.
②若向量组α
1
,α
2
,…,α
s
,β线性相关,则其中至少有一个向量可以被其余向量线性表示.但“有一个”未必一定是β,故(B)不正确.
③β可以被向量组α
1
,α
2
,…,α
s
的部分向量线性表示,则也一定可以被α
1
,α
2
,…,α
s
线性表示,事实上,若β可以被部分组α
1
,α
2
,…,α
r
(r<s)线性表示,有β=k
1
α
1
+k
2
α
2
+…+k
r
α
r
,也有β=k
1
α
1
+k
2
α
2
+…+k
r
α
r
+0·α
r+1
+…+0·α
s
,故(C)正确.
④β可以被向量组α
1
,α
2
,…,α
s
线性表示,但不一定被其任何一个部分向量组线性表示,如β=[2,0]
T
可以被向量组α
1
=[1,0]
T
,α
2
=[0,2]
T
线性表示,但不能由部分组α
2
=[0,2]
T
线性表示,故(D)不正确.
转载请注明原文地址:https://kaotiyun.com/show/4hy4777K
0
考研数学二
相关试题推荐
设向量组α1,α2,…,αm线性无关,β1可由α1,α2,…,αm线性表示,但β2不可由α1,α2,…,αm线性表示,则().
设矩阵A=(α1,α2,α3,α4)经行初等变换为矩阵B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则().
求微分方程x(y2-1)dx+y(x2-1)dy=0的通解.
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解.
设α1,α2,α3,β1,β2都是4维列向量,且4阶行列式|α1,α2,α3,β1|=m,|α1,α2,β2,α3|=n,则4阶行列式Iα3,α2,α1,β1+β2等于()
下列行列式的值为n!的是().
设有任意两个n维向量组α1,α2,…,αm和β1,β2,…,βm,若存在两组不全为零的数λ1,λ2,…,λm和k1,k2,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,则
随机试题
企业确定固定资产使用寿命,应当考虑的因素有()
对于严重的颅内压增高患者,首选的降颅压药物是()
背景资料某医院门诊楼,位于市中心区域,建筑面积28326m2,地下1层,地上10层,檐高33.7m。框架剪力墙结构,筏板基础,基础埋深7.8m,底板厚度1100mm,混凝土强度等级C30,抗渗等级P8。室内地面铺设实木地板,工程精装修交工。201
采取保证担保方式的,下列说法正确的有()。
下列排序正确的是()。
凯恩斯主义的总供给曲线成立的基本假设前提是()。
要使打印的报表每页显示3列记录,在设置时应选择()。
Alongwindingroadclimbsintoagatheringdusk,comingtoanabruptdeadendinfrontofahouse.Here.asolitaryflickering
A、It’sworthvisiting.B、Sheknowsalotaboutit.C、She’sbeentheremanytimes.D、It’snotfaxfromthecitycenter.A
Thepartoftheenvironmentalmovementthatdrawsmyfirm’sattentionisthedesignofcities,buildingsandproducts.Whenwed
最新回复
(
0
)