首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs,β为n维向量,则下列结论正确的是( ).
设α1,α2,…,αs,β为n维向量,则下列结论正确的是( ).
admin
2021-07-27
44
问题
设α
1
,α
2
,…,α
s
,β为n维向量,则下列结论正确的是( ).
选项
A、若β不能被向量组α
1
,α
2
,…,α
s
线性表示,则α
1
,α
2
,…,α
s
必线性无关
B、若向量组α
1
,α
2
,…,α
s
,β线性相关,则β可以被向量组α
1
,α
2
,…,α
s
线性表示
C、β可以被向量组α
1
,α
2
,…,α
s
的部分向量线性表示,则β可以被α
1
,α
2
,…,α
s
线性表示
D、β可以被向量组α
1
,α
2
,…,α
s
线性表示,则β可以被其任何一个部分向量组线性表示
答案
C
解析
①若β不能被向量组α
1
,α
2
,…,α
s
线性表示,则r(α
1
,α
2
,…,α
s
,β)=r(α
1
,α
2
,…,α
s
)+1,至于α
1
,α
2
,…,α
s
,β是否线性无关,取决于α
1
,α
2
,…,α
s
是否线性无关,由于题中未明示,故(A)不正确.
②若向量组α
1
,α
2
,…,α
s
,β线性相关,则其中至少有一个向量可以被其余向量线性表示.但“有一个”未必一定是β,故(B)不正确.
③β可以被向量组α
1
,α
2
,…,α
s
的部分向量线性表示,则也一定可以被α
1
,α
2
,…,α
s
线性表示,事实上,若β可以被部分组α
1
,α
2
,…,α
r
(r<s)线性表示,有β=k
1
α
1
+k
2
α
2
+…+k
r
α
r
,也有β=k
1
α
1
+k
2
α
2
+…+k
r
α
r
+0·α
r+1
+…+0·α
s
,故(C)正确.
④β可以被向量组α
1
,α
2
,…,α
s
线性表示,但不一定被其任何一个部分向量组线性表示,如β=[2,0]
T
可以被向量组α
1
=[1,0]
T
,α
2
=[0,2]
T
线性表示,但不能由部分组α
2
=[0,2]
T
线性表示,故(D)不正确.
转载请注明原文地址:https://kaotiyun.com/show/4hy4777K
0
考研数学二
相关试题推荐
设向量组α1,α2,…,αm线性无关,β1可由α1,α2,…,αm线性表示,但β2不可由α1,α2,…,αm线性表示,则().
设向量组α1,α2,α3为方程组AX=0的一个基础解系,下列向量组中也是方程组AX=0的基础解系的是().
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()
设A,B均是n阶实对称矩阵,则A,B合同的充分必要条件是()
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,设若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y22+y22
设f(x)可导,证明:f(x)的两个零点之间一定有f(x)+f’(x)的零点.
设f(x)=(x一a)(x一b)(x—c)(x一d),其中a,b,c,d互不相等,且f’(k)=(k一a)(k一b)(k一c),则k的值等于()
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
已知向量组α1,α2,α3,α4线性无关,则向量组()
随机试题
正常心脏后前位不易观察到的是
右下腹疼痛拒按,或右足屈而不伸,伸则痛甚,甚则局部肿痞,或时时发热,自汗恶寒,舌苔薄腻而黄,脉滑数。方剂选用
气雾剂的优点有()。
《建设工程安全生产管理条例》制定的基本法律依据包括()。
若企业不打算享受现金折扣优惠,则应尽量推迟付款的时间。()
如果会计师事务所非审计项目组成员的主要近亲属,通过继承从审计客户获得直接经济利益,则()。
《与朱元思书》是八年级下册第五单元的一篇课文,如果让你给八年级的学生执教这篇课文,你会怎么做呢?请按要求完成后面的题目:附:《与朱元思书》课文与朱元思书①
缺陷补偿,是指个体在充当社会角色时不可能事事成功,当自我角色目标失败时,常常可能会对相关的社会角色的重要性做重新评价,从而进行自我定义以补偿自己角色缺陷。根据上述定义,下列属于缺陷补偿的是()。
求|cos(x+y)|dxdy,其中D={(x,y)|
A、Assoonasshestarteduniversity.B、Aftershedidsomeresearch.C、Aftershetookaliteraturecourse.D、Whenshemetagood
最新回复
(
0
)