首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设γ1,γ2,…,γs和η1,η2,…,ηs分别是AX=0和BX=0的基础解系,证明:AX=0和BX=0有非零公共解的充要条件是γ1,γ2,…,γt,η1,η2,…,ηs线性相关.
设γ1,γ2,…,γs和η1,η2,…,ηs分别是AX=0和BX=0的基础解系,证明:AX=0和BX=0有非零公共解的充要条件是γ1,γ2,…,γt,η1,η2,…,ηs线性相关.
admin
2015-08-14
315
问题
设γ
1
,γ
2
,…,γ
s
和η
1
,η
2
,…,η
s
分别是AX=0和BX=0的基础解系,证明:AX=0和BX=0有非零公共解的充要条件是γ
1
,γ
2
,…,γ
t
,η
1
,η
2
,…,η
s
线性相关.
选项
答案
[*] 由γ
1
,γ
2
,…,γ
t
,η
1
,η
2
,…,η
s
线性相关,知存在k
1
,k
2
,…,k
t
,l
1
,l
2
,…,l
s
不全为零,使得 k
1
γ
1
+k
2
γ
2
+…+k
t
γ
t
+l
1
η
1
+l
2
η
2
+…+l
s
η
s
=0,令ξ=k
1
γ
1
+k
2
γ
2
+…+k
t
γ
t
,则ξ≠0(否则k
1
,k
2
,…,k
t
,l
1
,l
2
,…,l
s
全为0),且ξ=一l
1
η
1
-l
2
η
2
…-l
s
η
s
,即一个非零向量ξ既可由γ
1
,γ
2
,…,γ
t
表示,也可由η
1
,η
2
,…,η
s
表示,所以Ax=0和Bx=0有非零公共解. [*] 若Ax=0和Bx=0有非零公共解,假设为ξ≠0,则ξ=k
1
γ
1
+k
2
γ
2
+…+k
t
γ
t
且ξ=一l
1
η
1
一l
2
η
2
一…-l
s
η
s
,于是,存在k
1
,k
2
,…,k
t
不全为零,存在l
1
,l
2
,…,l
s
不全为零,使得 k
1
γ
1
+k
2
γ
2
+…+k
t
γ
t
+l
1
η
1
+l
2
η
2
+…+l
s
η
s
=0,从而γ
1
,γ
2
,…,γ
s
,η
1
,η
2
,…,η
s
线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/5034777K
0
考研数学二
相关试题推荐
cos(sinx)=1-sin2x/2!+sin4x/4!+o(x4)sin2x=[x-x3/3!+o(x3)]2=x2-x4/3+o(x4),sin4x=[x-x3/3!+o(x3)]4=x4+o(x4),cos(sinx)=1-1/2x2+5x4/24
2由sinx=x-x3/3!+o(x3)得x=sinx~x3/6,则
确定常数a,c的值,使得,其中c为非零常数.
设α,β是n维非零列向量,A=αβT+βαT.证明:r(A)≤2.
设A=B为三阶矩阵,r(B*)=1且AB=0,则t=________.
设函数y=f(x)由ey一xy=e所确定,求f′(0)和f"(0).
设平面区域D:1<x2+y2≤4,f(x,y)是区域D上的连续函数,则等于().
设D为由所围区域,计算
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,
设D={(x,y)|0≤x≤1,0≤y≤1),直线l:x+y=t(t≥0),S(t)为正方形区域D位于l左下方的面积,求
随机试题
加碱化剂的目的是消除氢离子的干扰。
未经有关部门批准,医师擅自开办诊所,卫生行政部门可采取的措施不包括
A.AAI起搏器B.VVI起搏器C.VAT起搏器D.DDD起搏器E.VOO起搏器测得窦房结恢复时间为2400ms,房室结文氏点为160次/分,可选用
A.当量剂量B.有效剂量C.比释动能D.吸收剂量E.吸收剂量率当身体各部分受到不同程度照射时,对人体造成的总的随机性辐射损伤是
关于总会计师,下列说法正确的有()。
按照(),金融机构可分为金融调控机构和金融运行机构。
外国旅游者在来华途中行李确系丢失,应由()向有关航空公司索赔。
从警察起源上看,()。
下列语句中,正确的是()。
Careforchildrenandolderpeoplehasrecentlyhittheheadlines.Governmentannouncementsonfundingreformshaveputcarefir
最新回复
(
0
)