首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,问: (1)α1能否由α2,α3线性表示?证明你的结论. (2)α4能否由α1,α2,α3线性表示?证明你的结论.
设向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,问: (1)α1能否由α2,α3线性表示?证明你的结论. (2)α4能否由α1,α2,α3线性表示?证明你的结论.
admin
2020-09-25
77
问题
设向量组α
1
,α
2
,α
3
线性相关,向量组α
2
,α
3
,α
4
线性无关,问:
(1)α
1
能否由α
2
,α
3
线性表示?证明你的结论.
(2)α
4
能否由α
1
,α
2
,α
3
线性表示?证明你的结论.
选项
答案
(1)α
1
能由α
2
,α
3
线性表示. 因为α
1
,α
2
,α
3
线性相关,所以有不全为零的数k
1
,k
2
,k
3
使k
1
α
1
+k
2
α
2
+k
3
α
3
=0. 下证k
1
≠0.若k
1
=0,则k
2
,k
3
不全为零,并且k
2
α
2
+k
3
α
3
=0,所以α
2
,α
3
线性相关,从而α
2
,α
3
,α
4
也线性相关,矛盾,所以k
1
≠0. 从而有[*]所以α
1
可由α
2
,α
3
线性表示. (2)α
4
不能由α
1
,α
2
,α
3
线性表示. 若α
4
可由α
1
,α
2
,α
3
线性表示,则有一组数k
1
,k
2
,k
3
使α
4
=k
1
α
1
+k
2
α
2
+k
3
α
3
.而由(1)知,α
1
可由α
2
,α
3
线性表示,从而有一组数l
2
,l
3
,使α
1
=l
2
α
2
+l
3
α
3
,从而有 α
4
=k
1
(l
2
α
2
+l
3
α
3
)+k
2
α
2
+k
3
α
3
=(k
1
l
2
+k
2
)α
2
+(k
1
l
3
+k
3
)α
3
, 所以(k
1
l
2
+k
2
)α
2
+(k
1
l
3
+k
3
)α
3
+(一1)α
4
=0. 而k
1
l
2
+k
2
,k
1
l
3
+k
3
,一1为不全为零的数,因此α
2
,α
3
,α
4
线性相关,矛盾,所以α
4
不能由α
1
,α
2
,α
3
线性表示.
解析
转载请注明原文地址:https://kaotiyun.com/show/5Jx4777K
0
考研数学三
相关试题推荐
=_____________。
已知方程组无解,则a=_______.
设f(x)的一个原函数为=______.
(2012年)已知函数f(x)满足方程f"(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2ex。(I)求f(x)的表达式;(Ⅱ)求曲线y=f(x2)∫0xf(一t2)dt的拐点。
已知X=AX+B,其中求矩阵X.
(15年)设随机变量X的概率密度为对X进行独立重复的观测,直到第2个大于3的观测值出现时停止,记Y为观测次数.(Ⅰ)求Y的概率分布;(Ⅱ)求EY.
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
[2013年]设平面区域D由直线x=3y,y=3x及x+y=8围成,计算
设X1,X2,…,Xn,…相互独立且都服从参数为(λ>0)的泊松分布,则当n→∞时以Ф(x)为极限的是
设X1,X2,…,X100相互独立且在区间[一1,1]上同服从均匀分布,则由中心极限定理≈________.
随机试题
全面预算的关键和起点是
碘缺乏病可对人体产生多种危害,包括
本病例最可能的诊断为下列急救措施不妥当的是
关于痛经,下列哪一项不正确
“为自己定的目标高,有活力且能够承受压力和挫折”,这是威尔逊领导者的()胜任特征。
【2015云南玉溪】课外活动的主体是()。
根据联合国教科文组织制定的标准,下列哪个国家已经进入了老龄化社会?()
根瘤细菌与豆科植物互相依存,其相互关系为________。
思想道德和法律都是调节人们思想行为、协调人际关系、维护社会秩序的重要手段。思想道德和法律虽然在调节领域、调节方式、调节目标等方面发挥的作用和方式存在很大不同,但二者都是社会上层建筑的重要组成部分,彼此联系紧密。下列关于思想道德和法律的关系,说法正确的是(
Wantaglimpseofthefutureofhealthcare?Takealookatthewaythevariousnetworksofpeopleinvolvedinpatientcareare
最新回复
(
0
)