首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2012年)已知函数f(x)满足方程f"(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2ex。 (I)求f(x)的表达式; (Ⅱ)求曲线y=f(x2)∫0xf(一t2)dt的拐点。
(2012年)已知函数f(x)满足方程f"(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2ex。 (I)求f(x)的表达式; (Ⅱ)求曲线y=f(x2)∫0xf(一t2)dt的拐点。
admin
2019-03-19
125
问题
(2012年)已知函数f(x)满足方程f"(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2e
x
。
(I)求f(x)的表达式;
(Ⅱ)求曲线y=f(x
2
)∫
0
x
f(一t
2
)dt的拐点。
选项
答案
(I)特征方程为r
2
+r一2=0,特征根为r
1
=1,r
2
=一2,因此齐次微分方程f"(x)+f’(x)一2f(x)=0的通解为f(x)=C
1
e
x
+C
2
e
-2x
。 再由f"(x)+f(x)=2e
x
,得2C
1
e
x
+5C
2
e
-2x
=2e
x
,可知C
1
=1,C
2
=0。故f(x)=e
x
。 [*] 令y"=0,原式可得x=0。 为了说明x=0是y"=0唯一的解,需讨论y"在x>0和x<0时的符号。 [*] 故x=0是y"=0唯一的解。 同时,由上述讨论可知曲线y=f(x
2
)∫
0
x
f(一t
2
)dt在x=0左右两边的凹凸性相反,可知点(0,0)是曲线y=f(x
2
)∫
0
x
f(一t
2
)dt唯一的拐点。
解析
转载请注明原文地址:https://kaotiyun.com/show/KlP4777K
0
考研数学三
相关试题推荐
设函数f(u)可微,且f’(2)=2,则z=f(x2+y2)在点(1,1)处的全微分dz|(1,1)=________。
设f(t)连续并满足f(t)=cos2t+∫0xf(t)sinsds,求f(t)。
设D={(x,y)|(x—1)2+(y—1)2=2},计算二重积分(x+y)dσ。
设f(x)在[0,a]上有一阶连续导数,证明至少存在一点ξ∈[0,a],使得∫0af(x)dx=af(0)+
设f(x)为可导函数,且满足条件,则曲线y=f(x)在点(1,f(1))处的切线斜率为()
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是r(B)=n。
设问k为何值,可使:(Ⅰ)r(A)=1;(Ⅱ)r(A)=2;(Ⅲ)r(A)=3。
设α=(1,0,1)T,A=ααT,若B=(kE+A)*是正定矩阵,则k的取值范围是________。
设f(x)=(Ⅰ)证明f(x)是以π为周期的周期函数;(Ⅱ)求f(x)的值域。
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为().
随机试题
此病变部位应考虑在为明确病因,辅助检查首选
药物和生物大分子作用时,不可逆的结合形式是
糖皮质激素治疗特发性血小板减少性紫癜的机制是
患者,男,51岁。从高处跌下,头部着地。当时昏迷约10分钟后清醒,左外耳道流出血性液,被家属送来急诊。护士首先应采取的措施是
根据我国刑法的规定,下列关于假释的说法,不正确的是:()。
甲乙丙三国均为世界贸易组织的成员方。甲国为提高本国钢材在国内市场的占有率,对来自乙国的钢材征收高额附加税,但此项决定并未公布,并且不适用于从丙国进的同类钢材。乙国认为其依据《1994年关税与摩擦总协定》应当获得的利益受损。关于甲的做法,下列选项正确的是
根据国际费雪效应()
杨朔的散文被称为()散文。
一些人乘坐客车出游,要求每辆客车所坐的人数相等,原来每辆客车乘坐22人,结果剩下1人未上车;如果有一辆客车空着走,那么所有人正好能平均分到其他各车上。已知每辆客车最多只能乘坐32人,那么,原来有()辆车,()人。
You’vebeenworkingoutregularlyforquiteawhile,butyou’renowherenearyourfitnessgoals.Sonowit’stimetobringin
最新回复
(
0
)