首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(99年)设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1,过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S
(99年)设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1,过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S
admin
2017-04-20
60
问题
(99年)设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1,过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S
1
,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S
2
,并设2S
1
一S
2
恒为1,求此曲线y=y(x)的方程.
选项
答案
曲线y=y(x)上点P(x,y)处的切线方程为 Y—y=y’(x)(X-x) 它与x轴的交点为[*].由于y’(x)>0,y(0)=1,从而y(x)>0,于是 [*] 注意到y(0)=1,并由(*)式知y’(0)=1,从而可知C
1
=1,C
2
=0.故所求曲线的方程是 y=e
x
解析
转载请注明原文地址:https://kaotiyun.com/show/5Mu4777K
0
考研数学一
相关试题推荐
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:|x-a|
设函数z=z(x,y)由方程确定,其中F为可微甬数,且F2’≠0,则=_______.
设有一半径为R的球体,P0是球面一定点,球体上任意一点的密度与该点到P0的距离平方成正比(比例常数k>0),求球体的重心的位置.
设函数f(x)在(-∞,+∞)内具有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d),记当ab=cd时,求I的值.
设随机变量X服从正态分布N(μ,σ2),则随σ的增大,概率P{丨x-μ丨
已知(1)计算行列式|A|.(2)当实数α为何值时,方程组Ax=β有无穷多解,并求其通解.
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
设二维随机变量X和Y的联合概率密度为求X和Y的联合分布F(x,y).
随机试题
减毒活疫苗的优点包括()
在一个C语言程序中()
患部红肿高大、根盘紧束,焮热疼痛者为患部形小如粟,顶白根硬而深,麻木痒痛者为
太息多因
减少分析方法中偶然误差的方法可采用
投资性房地产采用公允价值模式进行后续计量的,不需计提折旧或摊销,但应于每期期末进行减值测试,如果可收回金额小于账面价值,应计提减值准备。()
Manypeopleagreethat________knowledgeofEnglishisamustin________internationaltradetoday.
负性效应是一种心理效应,是指我们在认识他人的时候,对正负信息(也就是这个人做的好事和坏事)形成的印象总是不均等。人们常常总是把别人偶尔的“坏”记得牢牢的,却把他一以贯之的“好”抛之脑后。根据上述定义,以下属于负性效应的是:
2021年7月6日,《国家发展改革委关于加强基础设建设项目管理确保工程安全质量的通知》发布。下列不属于该通知中规定的措施的是()。
20世纪60年代以来,通用汽车集团累积投入1万亿美元用于改进汽车生产线,包括电子计算机、机器安装手臂等逐步应用到组装生产线上,与此同时,其使用的工人数量则急剧下降,由20世纪50年代最高潮的20万人,锐减到目前的不足10万人,但其年汽车生产总量却由20世纪
最新回复
(
0
)