首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
在椭圆的第一象限部分上求一点P,使该点处的切线,椭圆及两坐标轴所围图形的面积为最小.
在椭圆的第一象限部分上求一点P,使该点处的切线,椭圆及两坐标轴所围图形的面积为最小.
admin
2017-07-28
49
问题
在椭圆
的第一象限部分上求一点P,使该点处的切线,椭圆及两坐标轴所围图形的面积为最小.
选项
答案
过椭圆上任意点(x
0
,y
0
)的切线的斜率y’(x
0
)满足 [*] 分别令y=0与x=0,得x,y轴上的截距:[*] 于是该切线与椭圆及两坐标轴所围图形的面积(图4.9)为 [*] 问题是求:S(x)=[*](0<x<a)的最小值点,其中[*].将其代入S(x)中,问题可进一步化为求函数f(x)=x
2
(a
2
一x
2
)在闭区间[0,a]上的最大值点. 由f’(x)=2x(a
2
一2x
2
)=0(x∈(0,a))得a
2
—2x
2
=0,x=x
0
=[*]注意f(0)=f(a)=0,f(x
0
)>0,故x
0
=[*]是f(x)在[0,a]的最大值点.因此[*]为所求的点.
解析
转载请注明原文地址:https://kaotiyun.com/show/5Ou4777K
0
考研数学一
相关试题推荐
设两个随机变量X与Y独立同分布,P{X=-1}=P{Y=-1}=1/2,P{X=1}=P{Y=1}=1/2,则下列各式中成立的是().
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)nxm中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2…,xn)=(I)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)
设曲线积分∫c2xyex22dx+φ(x)dy与路径无关,其中φ(x)具有连续的导数,具φ(0)=1,计算的值.
设n元线性方程组Ax=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
微分方程2yy’’=(y’)2的通解为().
(2003年试题,八)设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}.讨论F(t)在区间(0,+∞)内的单调性;
(1998年试题,十)已知二次曲面方程x2+ay2+z2+2bxy+2xz+2yz=4可以经过正交变换化为椭圆柱面方程η2+4ζ2=4,求a,b的值和正交矩阵P.
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是k(1,0,一3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
求下列曲面的方程:以为准线,顶点在原点的锥面方程.
在椭球体的内接长方体中,求体积最大的长方体的体积.
随机试题
藏医常用的治疗方法有()
根据刑事诉讼法规定,证人应当到庭作证。证人到庭后,审判人员应当做的工作包括以下哪些内容?()。
计算道路网的密度,分析管线穿越地块的问题,可以采用矢量叠合的()的叠合。
某投资者打算购买A、B、C三只股票,该投资者通过证券分析得出三只股票的分析数据:(1)股票A的收益率期望值等于0.05、贝塔系数等于0.6;(2)股票B的收益率期望值等于0.12,贝塔系数等于1.2;(3)股票C的收益率期望值等于0.08,贝塔系数等于0.
对小规模纳税企业,下列说法中正确的有()。
关于适用法的效力,下列说法中正确的有()。
炎热的夏天,如果人长时间在烈日下暴晒容易出现中暑的症状。关于中暑的急救措施,下列说法错误的是:
简述高动荡行业的特点。
675年,()统一了朝鲜半岛。
下列不属于中国革命胜利的基本经验的是()
最新回复
(
0
)