首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2,a3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=( ).
设a1,a2,a3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=( ).
admin
2013-09-03
68
问题
设a
1
,a
2
,a
3
是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,a
1
=(1,2,3,4)
T
,a
2
+a
3
=(0,1,2,3)
T
,c表示任意常数,则线性方程组Ax=b的通解x=( ).
选项
A、
B、
C、
D、
答案
C
解析
由题设,Ax=b的系数矩阵A的秩为3,
因此Ax=0的基础解系中只含一个解向量,由于已知Aa
1
=b,Aa
2
=b,Aa
3
=b,
从而A(2a
1
)-A(a
2
+a
3
)=26-26=0,则A(2a
1
-a
2
-a
3
)=0,
即2a
1
-a
2
-a
3
=(2,3,4,5)
T
是Ax=0的解,且(2,3,4,5)
T
≠0,
因而可作为Ax=0的基础解系,所以Ax=b的通解为
,所以选(C).
转载请注明原文地址:https://kaotiyun.com/show/wx54777K
0
考研数学一
相关试题推荐
行列式=_____________________________
求下列极限:
设,证明当n→∞时,数列{xn}极限存在,并求其值
设y=f(x)是由方程sin(xy)+ln(y-x)=x所确定的隐函数,求.
曲线的渐近线条数为()
已知非齐次线性方程组有3个线性无关的解.求a,b的值及方程组的通解.
设(ai2+bi2≠0,i=1,2,3),证明三直线相交于一点的充分必要条件:向量组a,b线性无关,且向量组a,b,c线性相关.
求微分方程xdy+(x-2y)dx=0的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2以及x轴所围成的平面图形绕x轴旋转一周的旋转体体积最小.
双纽线r2=a2cos2θ(a>0)绕极轴旋转一周所围成的旋转曲面面积S=________.
设函数y=y(x)由参数方程所确定,求:
随机试题
离心泵安装时应注意哪些事项?
A.大汗淋漓,四肢厥冷,面色苍白,神情淡漠,呼吸微弱,脉微欲绝B.形体消瘦,五心烦热,颧红盗汗,口燥咽干,皮肤干燥,脉象细数C.身热大汗,汗热质黏,面色潮红,躁扰不安,渴喜冷饮,脉细数疾D.高热肢厥,神识昏沉,胸腹灼热,口渴喜饮,面色紫暗,脉沉有力
出现月经是由于血液中哪种激素浓度急剧下降所致
静脉注射用脂肪乳剂的乳化剂常用的有
胸骨角两侧平对()。
在每天作业前,使用单位应进行起重机的每日检查,下列()项检查不属每日必检项目。
浙江浙海服装进出口公司(3313910194)在对口合同项下进口蓝湿牛皮,委托浙江嘉宁皮革有限公司(3313920237)加工牛皮沙发革。承运船舶在帕腊纳瓜港装货启运,航经大阪,又泊停釜山港转“HANSASTAVANGER”号轮HV300W航次(提单号:H
信息技术教育是我国新的基础教育课程体系中设置的选修课程,是一门知识性与技能性相结合的基础工具课程。()
短板理论是指木桶的盛水量是由组成木桶的木板中最短的一块决定的,这块短板即为这个木桶盛水量的“限制因素”。根据上述定义,下列不符合短板理论的是()。
食用加碘盐可以预防甲状腺肿大,但摄入过多的碘可能会对人体产生危害。对此,有专家指出,只要食用加碘盐的量不超过专业部门规定的标准,就完全可以避免这种危害。因此,人们对于食用加碘盐的担心是毫无必要的。要使上述结论成立,所需要的前提是:
最新回复
(
0
)