首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2009年] 设非负函数y=y(x)(x≥0)满足微分方程xy″一y′+2=0.当曲线y=y(x)过原点时,其与直线x=1及y=0围成平面区域D的面积为2,求D绕y轴旋转所得的旋转体体积.
[2009年] 设非负函数y=y(x)(x≥0)满足微分方程xy″一y′+2=0.当曲线y=y(x)过原点时,其与直线x=1及y=0围成平面区域D的面积为2,求D绕y轴旋转所得的旋转体体积.
admin
2019-04-05
43
问题
[2009年] 设非负函数y=y(x)(x≥0)满足微分方程xy″一y′+2=0.当曲线y=y(x)过原点时,其与直线x=1及y=0围成平面区域D的面积为2,求D绕y轴旋转所得的旋转体体积.
选项
答案
由初始条件求出所给微分方程的特解,进而求出旋转体体积. 先求解不显含y的微分方程,求出y(x)的表示式.令y′=p,则y″=[*],原方程化为 [*],即 xp′一p=-2, 亦即[*], 故[*]+C
1
,所以p=2+C
1
x,其中C
1
为任意常数. 在[*]=2+C
1
x两边积分得到y=2x+C
1
x
2
/2+C
2
,其中C
2
为任意常数. 由y(0)=0得到C
2
=0.又由 2=∫
0
1
y(x)dx=∫
0
1
(2x+[*]C
1
x
2
)dx=[*] 从而C
1
=6,于是非负函数为y=x+3x
2
(x≥0). 在第一象限曲线y=f(x)可表示为x=[*]与x=1的交点为(1,5),于是D(见图1.3.5.6)围绕y轴旋转所得旋转体的体积为 V=∫
0
5
π×1
2
dy一∫
0
5
5πx
2
dy=5π一V
1
, 其中 V
1
=∫
0
5
πx
2
dy=∫
0
5
π·[*]一1)
2
dy =[*], 故 V=5π一39π/18=51π/18=17π/6. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/5WV4777K
0
考研数学二
相关试题推荐
高度为h(t)(t为时间)的雪堆在融化过程中,其侧面满足,已知体积减少的速度与侧面积所成比例系数为0.9,问高度为130的雪堆全部融化需要多少时间(其中长度单位是cm,时间单位为h)?
求二元函数z=f(x,y)=x2y(4一x一y)在直线x+y=6,x轴与y轴围成的闭区域D上的最大值与最小值.
解下列微分方程:(Ⅰ)y"-7y’+12y=x满足初始条件的特解;(Ⅱ)y"+a2y=8cosbx的通解,其中a>0,b>0为常数;(Ⅲ)y"’+y"+y’+y=0的通解.
设两曲线y=(a>0)与y=在(x0,y0)处有公切线(如图3.13),求这两曲线与x轴围成的平面图形绕x轴旋转而成的旋转体的体积V.
求下列极限:
若f(x)=是(一∞,+∞)上的连续函数,则a=_____________。
[2018年]若(e2+ax2+bx)1/x2=1,则().
[2003年]设位于第一象限的曲线y=f(x)过点(√2,1/2),其上任一点P(x,y)处的法线与y轴的交点为Q,且线段PQ被x轴平分.已知曲线y=sinx在[0,π]上的弧长为l,试用l表示曲线y=f(x)的弧长s.
[2018年]已知连续函数f(x)满足∫0xf(t)dt+∫0xtf(x一t)dt=ax2.若f(x)在区间[0,1]上的平均值为1,求a的值.
随机试题
在下列先秦典籍中,对辩证思维作了大量简明而深刻论述的是()
脑膜中动脉起自
有关简易倒睫电解器应用的叙述,错误的是
对于基金管理公司的重大事项的报备,国务院证券监督管理机构应当自受理申请之日起()日内做出批准或者不予批准的决定,并通知申请人;不予批准的,应当说明理由。
事业单位工作人员连续旷工超过()工作日的,事业单位可以解除聘用合同。
关于长期股权投资的处置,下列说法中正确的有()。
甲企业因不能清偿到期债务被申请重整,其中欠乙公司无担保货款50万元。在重整期间,乙公司得到10%的货款即5万元,当人民法院裁定终止重整计划执行,并宣告债务人破产时,乙公司可以继续得到清偿的情形是()。
下列关于职业道德的说法中,正确的是()。
皮亚杰所说的守恒是指()。
有以下程序段charch;intk;ch=′a′;k=12;printf("%c,%d,",ch,ch,k);printf("k=%d\n",k);已知字符a的ASCII码值为97,则执行上述程序段后输出结果是
最新回复
(
0
)