首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2007年] 设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值.又f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b)使得f″(ξ)=g″(ξ).
[2007年] 设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值.又f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b)使得f″(ξ)=g″(ξ).
admin
2019-04-05
200
问题
[2007年] 设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值.又f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b)使得f″(ξ)=g″(ξ).
选项
答案
由所证结论f″(ξ)=g″(ξ)易想到构造辅助函数F(x)=f(x)一g(x),且要对F(x)两次使用罗尔定理,为此要找到F(x)的三个不同的零点. 证 因f(x),g(x)在(a,b)上连续,不妨设存在x
1
≤x
2
(x
1
,x
2
∈[a,b])使f(x
1
)=M=g(x
2
),其中M为f(x),g(x)在[a,b]上相等的最大值.令F(x)=f(x)一g(x),若x
1
=x
2
,令η=x
1
,则F(η)=f(x
1
)一g(x
1
)=M—M=0.若x
1
<x
2
,因 F(x
1
)=f(x
1
)一g(x
1
)=M—g(x
1
)≥0,F(x
2
)=f(x
2
)一g(x
2
)=f(x
2
)一M≤0. 又F(x)在[a,b]上连续,由介值定理知,存在η∈(x
1
,x
2
)[*](a,b),使F(η)=0. 由题设有F(a)=f(a)一g(a)=0,F(b)=f(b)一g(b)=0.对F(x)分别在[a,η]、[η,b]上使用罗尔定理得到:存在ξ
1
∈(a,η),ξ
2
∈(η,b),使F′(ξ
1
)=0,F′(ξ
2
)=一0.又因F′(x)可导,对F(x)在[ξ
1
,ξ
2
]上使用罗尔定理得到:存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使F″(ξ)=0, 即f″(ξ)=g″(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/5XV4777K
0
考研数学二
相关试题推荐
已知a,b,c不全为零,证明方程组只有零解.
已知非齐次线性方程组有3个线性无关的解.(1)证明此方程组的系数矩阵A的秩为2.(2)求a,b的值和方程组的通解.
设α是n维非零列向量,记A=E-ααT.证明αTα≠1A可逆.
设A是正定矩阵,B是实对称矩阵,证明AB相似于对角矩阵.
证明:r(A)=r(ATA).
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)的极大值不能为正,极小值不能为负;
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且.证明:f’(x0)=M.
随机试题
下列杂剧作品属于元杂剧作家宫天挺的代表作的是()
以下事项属于公司章程绝对必要记载事项的是()
膀胱经的郄穴是
在我国,封闭式基金的交割与资金交收实行()制度。[2015年3月证券真题]
(2012年)A股份有限公司(以下简称“A公司”)注册资本为8000万元。甲系A公司控股股东,持股比例为35%。乙持有A公司股份192万股。2007年8月20日,乙听到A公司欲进行产业转型的传闻,遂通过电话向A公司提出查阅董事会近一年来历次会议决议的要求。
有没有专门的制式服装是近代警察与古代警察区别之一。()
根据下图回答131~135题。由以上数据统计图,试估计每台电视的销售价是多少元?()
结合材料回答问题:材料1若夫美、法民政,英、德宪法,地远俗殊,变久迹绝,臣故请皇上以俄大彼得之心为心法,以日本明治之敢为政法也。然求其时地不远,教俗略同,成效已彰,推移即时,若名书佳画,墨迹尚存,而易于临摹,如宫室衣裳,裁量恰符,而立可
文慧是新东方学校的人力资源培训讲师,负责对新入职的教师进行入职培训,其PowerPoint演示文稿的制作水平广受好评。最近,她应北京节水展馆的邀请,为展馆制作一份宣传水知识及节水工作重要性的演示文稿。节水展馆提供的文字资料及素材参见“水资源利用与节水(素
Thisbookisaninvitationtosharetheexperiencesofpeople(31)likeyou,learnanewlanguageorcometoliveinacultured
最新回复
(
0
)