首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明: ∫axf(t)dt在(a,b)的极大值不能为正,极小值不能为负;
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明: ∫axf(t)dt在(a,b)的极大值不能为正,极小值不能为负;
admin
2017-07-10
70
问题
设f(x)在[a,b]上可导f’(x)+[f(x)]
2
一∫
a
x
f(t)dt=0,且∫
a
-b
f(t)dt=0.证明:
∫
a
x
f(t)dt在(a,b)的极大值不能为正,极小值不能为负;
选项
答案
记F(x)=∫
a
2
f(t)dt,假设F(x)在(a,b)内能取到正的极大值,且记该极大值点为x
0
,于是F’(x
0
)=0,F(x
0
)>0,即f(x
0
)=0,∫
0
x0
f(t)dt>0。在方程f’(x)+[f(t)]
2
一∫
a
x
f(t)dt=0中令x=x
0
,得F’’(x
0
)=∫
a
x0
f(t)dt>0,故F(x
0
)应是极小值,这与假设矛盾。所以∫
a
x
f(t)dt在(a,b)的极大值不能为正,极小值不能为负。
解析
转载请注明原文地址:https://kaotiyun.com/show/LSt4777K
0
考研数学二
相关试题推荐
某型号电子元件寿命(单位:h)服从分布N(160,202),随机抽四件,求其中没有一件寿命小于180h的概率.
求下列函数的极值:
证明曲线有位于同一直线上的三个拐点.
计算下列二重积分:
求下列不定积分:
若f(x)是连续函数,证明
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A的特征值与特征向量;
因为y=ex在实数域内严格单调增加,又在区间[-2,-1]上1≤-x3≤8,-8≤x3≤-1,所以在区间[-2,-1]上e≤e-x3≤e8,e-8≤ex3≤e-1<e,由定积分的性质知[*]
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.(I)写出f(x)在[-2,0]上的表达式;(Ⅱ)问k为何值时,f(x)在x=0处可导.
(2002年试题,十二)已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
随机试题
(2021年临沂)认为学习成绩差的学生品行也不好,这是一种()
患儿4岁,患室间隔缺损,病情较重,平时需用地高辛维持心功能。现患儿因上呼吸道感染后诱发急性心力衰竭,按医嘱用西地兰,患儿出现恶心,呕吐,视力模糊。上述临床表现的原因是
关于桥梁墩台施工的说法,正确的是()。
某省属重点水利工程项目计划于2004年12月28日开工,由于坝肩施工标段工程复杂,技术难度高,一般施工队伍难以胜任,业主自行决定采取邀请招标方式。于2004年9月8日向通过资格预审的A、B、C、D、E五家施工承包企业发出了投标邀请书。该五家企业均接受了邀请
票据的功能包括()。
下列有关特别风险相关的内部控制的说法中,错误的是()。
著名教育心理学家桑代克是从哪个角度建立自己的教育心理学体系?()
中国政府对台不承诺放弃使用武力,针对的是()
为了使模块尽可能独立,要求()。
若有定义语句:doublea,*p=&a;以下叙述中错误的是()。
最新回复
(
0
)