首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设一元函数f(x)有下列四条性质: ①f(x)在[a,b]连续; ②f(x)在[a,b]可积; ③f(x)在[a,b]存在原函数; ④f(x)在[a,b]可导。 若用“P => Q”表示可由性质P推出性质Q,则有( )
设一元函数f(x)有下列四条性质: ①f(x)在[a,b]连续; ②f(x)在[a,b]可积; ③f(x)在[a,b]存在原函数; ④f(x)在[a,b]可导。 若用“P => Q”表示可由性质P推出性质Q,则有( )
admin
2019-03-14
50
问题
设一元函数f(x)有下列四条性质:
①f(x)在[a,b]连续; ②f(x)在[a,b]可积;
③f(x)在[a,b]存在原函数; ④f(x)在[a,b]可导。
若用“P => Q”表示可由性质P推出性质Q,则有( )
选项
A、①=>②=>③。
B、①=>③=>④。
C、④=>①=>②。
D、④=>③=>①。
答案
C
解析
这是讨论函数f(x)在区间[a,b]上的可导性、连续性及可积性与原函数存在性间的关系问题。由f(x)在[a,b]可导,则f(x)在[a,b]连续,那么f(x)在[a,b]可积且存在原函数。故选C。
转载请注明原文地址:https://kaotiyun.com/show/67j4777K
0
考研数学二
相关试题推荐
已知函数f(χ,y,z)=χ2y2z及方程χ+y+z-3+e-3=e-(χ+y+z),(*)(Ⅰ)如果χ=χ(y,χ)是由方程(*)确定的隐函数满足χ(1,1)=1,又u=f(y,z),y,z),求(Ⅱ)如果z=z(χ
设y=f(t),其中f,g均二阶可导且g’(x)≠0,求
设f(x)=|x|sin2x,则使导数存在的最高阶数n=()
设A是4×3矩阵,且A的秩r(A)=2,而则r(AB)=_________。
甲、乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处,图中实线表示甲的速度曲线v=v1(t)(单位:m/s),虚线表示乙的速度曲线v=v2(t),三块阴影部分面积的数值依次为10,20,3计时开始后乙追上甲的时刻记为t0(单位:s),则()
求微分方程(1-x2)y’’-xy’=0的满足初始条件y(0)-0,y’(0)=1的特解.
二次型f(x1,x2,x3)=2x12+x22一4x32一4x1x2一2x2x3的标准形为
微分方程ydx+(x一3y2)dy=0满足条件y|x=1=1的解为y=________.
设当x→0时,(1一cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn是比(一1)高阶的无穷小,则正整数n等于
设z=z(x,y)有连续的二阶偏导数并满足①(Ⅰ)作变量替换u=3x+y,v=x+y,以u,v作为新的自变量,变换上述方程;(Ⅱ)求满足上述方程的z(x,y).
随机试题
休克早期由于血液______和脑循环的自身调节,保证了脑的血液供应。
“艺术品是将情感呈现出来供人观赏的,是由情感转化成的可见的或可听的形式。”做出这一论断的文论家是【】
某写字楼工程,建筑面积120000m2,地下2层,地上22层,钢筋混凝土框架一剪力墙结构,合同工期780d。某施工总承包单位按照建设单位提供的工程量清单及其他招标文件参加了该工程的投标,并以34263.29万元的报价中标。双方依据《建设工程施工合同(示范文
下列各项中,影响应收账款周转率指标的因素有()。
根据下列材料回答问题。能够从上述资料中推出的是()。
几年以前,作为一个减少以橡树叶:子为食的吉普赛蛾数量的方法,昆虫学家在橡树林中引进了一种对吉普赛蛾有毒的真菌。从此那个地区毛虫和成熟的蛾的数量都显著下降。昆虫学家推论出这些数量的下降归因于有毒真菌的㈩现。下面哪一点如果正确的话,最能支持昆虫学家做出的结论?
从航天飞机里看太阳是什么颜色的?()
Forsometimescientistshavebelievedthatcholesterolplaysamajorroleinheartdiseasebecausepeoplewithfamilialhyperch
Nottoomanydecadesagoitseemed"obvious"bothtothegeneralpublicandtosociologiststhatmodernsocietyhaschangedpeop
A.incidentB.whenC.includeD.flightsE.informedF.carriagesG.calledH.seriousI.stressfulJ.disasterK.comm
最新回复
(
0
)