首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设一元函数f(x)有下列四条性质: ①f(x)在[a,b]连续; ②f(x)在[a,b]可积; ③f(x)在[a,b]存在原函数; ④f(x)在[a,b]可导。 若用“P => Q”表示可由性质P推出性质Q,则有( )
设一元函数f(x)有下列四条性质: ①f(x)在[a,b]连续; ②f(x)在[a,b]可积; ③f(x)在[a,b]存在原函数; ④f(x)在[a,b]可导。 若用“P => Q”表示可由性质P推出性质Q,则有( )
admin
2019-03-14
42
问题
设一元函数f(x)有下列四条性质:
①f(x)在[a,b]连续; ②f(x)在[a,b]可积;
③f(x)在[a,b]存在原函数; ④f(x)在[a,b]可导。
若用“P => Q”表示可由性质P推出性质Q,则有( )
选项
A、①=>②=>③。
B、①=>③=>④。
C、④=>①=>②。
D、④=>③=>①。
答案
C
解析
这是讨论函数f(x)在区间[a,b]上的可导性、连续性及可积性与原函数存在性间的关系问题。由f(x)在[a,b]可导,则f(x)在[a,b]连续,那么f(x)在[a,b]可积且存在原函数。故选C。
转载请注明原文地址:https://kaotiyun.com/show/67j4777K
0
考研数学二
相关试题推荐
证明极限不存在.
设u=.
设n>1,n元齐次方程组AX=0的系数矩阵为A=(1)讨论a为什么数时AX=0有非零解?(2)在有非零解时求通解.
证明:与基础解系等价的线性无关的向量组也是基础解系.
设f(χ)在[0,1]可导且f(1)=2f(χ)dχ,求证:ξ∈(0,1),使得f′(ξ)=2ξf(ξ).
设三阶实对称矩阵A的特征值为λ1=一1,λ2=λ3=1,对应于λ1的特征向量为ξ1=(0,1,1)T,求A。
已知三元二次型f=xTAx的秩为2,且求此二次型的表达式,并求正交变换x=Qy化二次型为标准形。
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(一2+a2x3)2+…+(xn一1+an一1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数,试问:当a1,a2,…,an满足何种条件时,二次型f为正定二次型.
已知f(x)是周期为5的连续函数,它在x=0某个邻域内满足关系式f(1+sinx)一3f(1一sinx)=8x+a(x)其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程.
(1)设=8,则a=_______.(2)设χ-(a+bcosχ)sinχ为χ的5阶无穷小,则a_______,b_______.(3)设当χ→0时,f(χ)=ln(1+t)dt~g(χ)=χa(ebχ-1),则a=_______,b=
随机试题
ELISA反应中应用最多的底物是
患者男性35岁,3个月来右侧后牙咬物不适,喝热水有时引起疼痛。近3日来,夜痛影响睡眠,并引起半侧耳后部痛,服止痛片无效。检查时见右下第一、二磨牙均有充填体,叩痛(+)。应进行的主要检查是A.叩诊B.探诊C.扪诊D.温度测验E.X线检查
用于原油、汽油、溶剂油、重整原料油以及需要控制蒸发损失及大气污染、控制放出不良气体、有着火危险产品的储罐是()。
下列费用中,属于生产准备费的是()。
某企业年初未分配利润200万元,本年实现净利润1000万元,提取法定盈余公积150万元,提取任意盈余公积50万元,则该企业年末可供投资者分配利润为1000万元。()
在各种形式的纳税期限中,商品课税通常采用的形式是( )。
下列选项中,()不属于银行二级资本。
音乐方面的吹拉弹唱,体育方面的球类、体操、田径,属于()技能。
鸡尾酒会效应:在鸡尾酒会上,很多人在同时进行着各种交谈,但一个人同一时刻只能注意和参与其中一个交谈,这是注意分配的问题。由于心理资源有限,同一时刻只能将信息加以过滤和筛选,以此时最重要或最有兴趣的信息为注意对象。作为一个选择过滤器,注意就像收音机上的旋钮,
Readtheextractfromanarticleaboutnegotiationbelow.Inmostofthelines(41-52),thereisoneextraword.Iteitheris
最新回复
(
0
)