首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1、λn分别为n阶实对称矩阵A的最小和最大特征值,X1、Xn分别为对应于λ1和λn的特征向量,记 证明:λ1≤f(X)≤λn,minf(X)=λ1=f(X1),maxf(X)=λn=f(Xn)
设λ1、λn分别为n阶实对称矩阵A的最小和最大特征值,X1、Xn分别为对应于λ1和λn的特征向量,记 证明:λ1≤f(X)≤λn,minf(X)=λ1=f(X1),maxf(X)=λn=f(Xn)
admin
2017-04-19
42
问题
设λ
1
、λ
n
分别为n阶实对称矩阵A的最小和最大特征值,X
1
、X
n
分别为对应于λ
1
和λ
n
的特征向量,记
证明:λ
1
≤f(X)≤λ
n
,minf(X)=λ
1
=f(X
1
),maxf(X)=λ
n
=f(Xn)
选项
答案
只证最大值的情形(最小值情形的证明类似):必存在正交变换X=PY(P为正交矩阵,Y=(y
1
,…,y
n
)
T
),使得[*]=λ
1
y
1
2
+…+λ
n
y
n
2
≤λ
n
(y
1
2
+…+y
n
2
)=λ
n
解析
转载请注明原文地址:https://kaotiyun.com/show/68u4777K
0
考研数学一
相关试题推荐
设曲线L:f(x,y)=l(f(x,y)具有一阶连续偏导数),过第Ⅱ象限内的点M和第N象限内的点N,F为己上从点M到点N的一段弧,则下列积分小于零的是
设向量组α1,α2,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求.
假设:(1)函数y=f(x)(0≤x<+∞)满足条件f(0)=0和0≤f(x)≤ex-1;(2)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别相交于点P1和P2;(3)曲线y=f(x)、直线MN与x轴所围封闭图形的面积S恒等于线段P1P2的
设A是n阶方阵,线性方程组AX=0有非零解,则线性非齐次方程组ATX=b对任何b=(b1,b2,…,bn)T()
设A是n阶正定矩阵,E是n阶单位阵,证明A+E的行列式大于1.
(2006年试题,21)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=O的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
已知二次曲面X2+4y2+3z2+2axy+2xz+2(a一2)yz=1是椭球面,则a的取值为____________.
双纽线(x2+y2)2=x2一y2所围成的区域面积可表示为()。
求下列曲线积分:(Ⅱ)I=∫Ly2ds,其中平面曲线L为旋轮线(0≤t≤2π)的一拱;(Ⅲ)I=∫L(x+y)ds,其中L为双纽线r2=a2cos2θ(极坐标方程)的右面一瓣.
随机试题
柠檬酸是下列哪种酶的变构激活剂()(2006年)
23岁,男性,腹泻一日,大便6~7次/日,为水样便,无发热及里急后重感。便常规:脓细胞0~5/HP,便涂片染色,见G+短小弯曲杆菌。悬滴检查:见细菌活动力强,这种细菌最可能是
防护电器的设置参数应满足()。
票据出票日期未按要求规范填写的,开户银行可予受理,但由此造成的损失由出票人自行承担。()
金融约束论的核心思想是()。
年薪制中,基本工资的决定因素有()。
一个没有普通话一级甲等证书的人不可能成为一个主持人,因为主持人不能发音不标准。上述论证还需基于以下哪一前提?
如何理解马克思主义的崇高性?
阅读下面的对话,根据其内容写一篇有关Zoe面试的记叙文。要求:1.所写短文应与对话相关内容意义相符,涵盖其要点。2.用你自己的语言来表达,可以改写对话中的句子,但不可以照抄原句。注意:词数80词左右。Bob:Hi,Zoe!Zoe:Hi,
A、692million.B、25.25billion.C、330million.D、358million.A
最新回复
(
0
)