首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2006年试题,21)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=O的两个解. 求A的特征值与特征向量;
(2006年试题,21)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=O的两个解. 求A的特征值与特征向量;
admin
2013-12-27
56
问题
(2006年试题,21)设3阶实对称矩阵A的各行元素之和均为3,向量α
1
=(一1,2,一1)
T
,α
2
=(0,一1,1)
T
是线性方程组Ax=O的两个解.
求A的特征值与特征向量;
选项
答案
因为矩阵A的各行元素之和均为3,所以有[*]由特征值和特征向量的定义知,λ=3是矩阵A的特征值,α=(1,1,1)
T
是对应的特征向量,全部的特征向最为kα,其中k是不为零的常数;又依题设知,Aα
1
=0,Aα
2
=0,且α
1
与α
2
线性无关,所以λ=0是矩阵A的二重特征值,α
1
,α
2
是其对应的特征向量,对应的全部特征向量为k
1
α
1
+k
2
α
2
,其中k
1
,k
2
是不全为零的常数
解析
转载请注明原文地址:https://kaotiyun.com/show/zC54777K
0
考研数学一
相关试题推荐
设非齐次线性方程组Ax=β的通解为x=k1(1,0,0,1)T+k2(2,1,0,1)T+(1,0,1,2)T,其中k1,k2为任意常数.A=(α1,α2,α3,α4),则()
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数)证明
已知的一个特征向量.试确定参数a,b及特征向量ξ所对应的特征值;
设y1=e-x,y2=2xe-x,y3=3ex是某三阶常系数齐次线性微分方程的解,试确定该微分方程的形式.
举例说明下列各命题是错误的:若有不全为0的数λ1,λ2,…,λm,使λ1a1+…+λmam+λ1b1+…+λmbm=0成立,则a1,a2,…,am线性相关,b1,b2,…,bm亦线性相关.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,试证在(0,1)内至少存在一点ξ,使
设某次考试的考生成绩服从正态分布,从中随机抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平α=0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程.
某保险公司设置某一险种,规定每一保单有效期为一年,有效理赔一次,每个保单收取保费500元,理赔额为40000元.据估计每个保单索赔概率为0.01,设公司共卖出这种保单8000个,求该公司在该险种上获得的平均利润.
在天平上重复称量一重为a的物品,假设各次称量结果相互独立且同服从正态分布N(a,0.22),若以n表示n次称量结果的算术平均值,则为使P{|X ̄-a|<0.1}≥0.95,n的最小值应小于自然数_________.
设X1,X2,…,Xn(n>2)为来自总体N(0,1)的简单随机样本,为样本均值,记Yi=Xi-,i=1,2,…,n.求:(Ⅰ)Yi的方差DYi,i=1,2,…,n;(Ⅱ)Y1与Yn的协方差cov(Y1,Yn).
随机试题
会计科目的设计过程中,第一步应该是()
患儿,6岁。肺炎入院。今天查体发现患儿腹胀明显,肠鸣音消失,判断患儿最可能是并发了
粪便检查,可作为急性细菌性痢疾诊断指标的细胞是()
患儿,7岁,两足趾、足背皮肤有l0余枚隆起赘生物,小者如粟米,大者如黄豆,状如花蕊,表面蓬松枯槁,搔破后易出血,其诊断是()
环境保护治理中,“三废”的内容是下列哪一条?
( )不属于建设工程法律法规规章体系。
1989年,财政部颁布的会计电算化法规是()。
下列做法符合宪法或者法律规定的是()。
某木制品公司甲与日本某商场订有一份木制品买卖合同。为了履行该合同,甲多方求购某种稀有木材,未果。正当交货时间临近时.本地某木材公司乙主动上门提出以高于市场平均价4倍的价格向甲公司出售相当数量的该种木材。甲公司迫于无奈,按乙提出的条件与其签订了合同。随后,甲
下列关于Winmail邮件服务器描述中,错误的是
最新回复
(
0
)