首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)上可导, (1)若f(x)为奇函数,证明fˊ(x)为偶函数; (2)若f(x)为偶函数,证明fˊ(x)为奇函数; (3)若f(x)为周期函数,证明fˊ(x)为周期函数.
设f(x)在(-∞,+∞)上可导, (1)若f(x)为奇函数,证明fˊ(x)为偶函数; (2)若f(x)为偶函数,证明fˊ(x)为奇函数; (3)若f(x)为周期函数,证明fˊ(x)为周期函数.
admin
2011-12-29
120
问题
设f(x)在(-∞,+∞)上可导,
(1)若f(x)为奇函数,证明fˊ(x)为偶函数;
(2)若f(x)为偶函数,证明fˊ(x)为奇函数;
(3)若f(x)为周期函数,证明fˊ(x)为周期函数.
选项
答案
证明 (1)f(-x)=-f(x) f(x)=-f(-x) 所以fˊ(x)=-fˊ(-x)(-1)=fˊ(-x)fˊ(x)为偶函数 (2)f(-x)=f(x) fˊ(x)=-fˊ(-x)所以fˊ(x)为奇函数 (3)f(x+T)=F(x) fˊ(X)=fˊ(x+T) 所以fˊ(x+T)为周期函数
解析
转载请注明原文地址:https://kaotiyun.com/show/mI54777K
0
考研数学一
相关试题推荐
设z=z(x,y)是由方程e2yz+x+y2+z=7/4确定的函数,则出dz|(1/2,1/2)=________.
(1997年)设y==_______.
(2001年试题,五)设p=p(x)是抛物线上任一点M(x,y)(x≥1)的曲率半径,s=s(x)是该抛物线上介于点A(1,1)与M之间的弧长,计算的值.(在直角坐标系下曲率公式为
=_______.
求微分方程xy’+2y=xlnx满足y(1)=-1/9的解。
如图1-3-2,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分∫03(x2+x)f’’’(x)dx.
(Ⅰ)证明:对任意的正整数n,都有成立;(Ⅱ)设an=1+-lnn(n=1,2,…),证明数列{an}收敛。
已知y1(x)=ex,y2(x)=u(x)ex是二阶微分方程(2x一1)一(2x+1)y’+2y=0的两个解,若u(-1)=e,u(0)=一1,求u(x),并写出该微分方程的通解.
[2016年]极限=___________.
一个比重为1,半径为R的球体沉入水中,它与水平面相接,要从水中把球捞出,需做多少功?
随机试题
1994年12月1日下午1时许,××地质学院家属××在挖冬贮菜窖时发现一口大缸,内有一“铜桶”(实际上铅罐),打开桶盖螺丝后,发现桶内有铅和石蜡,石蜡中有一用绳子拴着的“铜棒”(实际上是放射源)。在场人员以为发现了“宝物”,便取出相互传看,有人还用牙齿咬。
面部痛觉障碍在鼻尖及口周围最明显,外周稍差,其病变在
葛根芩连汤的功效是()
应是执业药师应具有药师或药学相关专业助理工程师(含)以上技术职称
下列有关商业银行解散的说法错误的是:()
全面质量管理是以()为基础的质量管理。
下列属于浙江省的民间信俗的有()。
我国的地产市场是土地使用权和所有权同时转让。()
有经验的司机完全有能力并习惯以120公里的时速在高速公路上安全行驶,为了迅速提高道路的使用效率,某条高速公路的最高时速限制由原来100公里转为120公里。以下各项如果为真,最能质疑上述主张的是()。
青花瓷发展的黄金时代是明朝永乐、宣德时期,与郑和下西洋在时间上重合,这不能不使我们思考:航海与瓷器同时达到鼎盛,仅仅是历史的偶然吗?从历史事实来看,郑和下西洋为青花瓷的迅速崛起提供了历史契机。近二三十年的航海历程推动了作为商品的青花瓷的大量生产与外销,不仅
最新回复
(
0
)