首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组α1=(1,2,一1,1),α2=(2,0,t,0),α3=(0,一4,5,一2)的秩为2,则t=________.
已知向量组α1=(1,2,一1,1),α2=(2,0,t,0),α3=(0,一4,5,一2)的秩为2,则t=________.
admin
2017-04-24
66
问题
已知向量组α
1
=(1,2,一1,1),α
2
=(2,0,t,0),α
3
=(0,一4,5,一2)的秩为2,则t=________.
选项
答案
3.
解析
以α
1
,α
2
,α
3
为行作成矩阵A,并对A作初等变换:
由此可知当且仅当f=3时,矩阵A的秩、也即向量组α
1
,α
2
,α
3
的秩等于2.
由于α
1
,α
3
线性无关,故向量组α
1
,α
2
,α
3
的秩为2当且仅当α
2
可由α
1
,α
3
线性表出,即存在常数x
1
,x
2
,使得x
1
α
1
+x
2
α
3
=α
2
,亦即
由此解得t=3.
转载请注明原文地址:https://kaotiyun.com/show/6At4777K
0
考研数学二
相关试题推荐
设∫0yetdt+∫0xcostdt=xy确定函数y=y(x),则dy/dx=________.
设f(x)为奇函数且f’(1)=2,则d/dxf(x3)|x=-1=________.
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=5/3.证明:存在ξ∈(0,2),使得f’"(ξ)=2.
设f(x)在[a,b]上二阶可导且f"(x)>0,证明:f(x)在(a,b)内为凹函数.
设f(x)在[0,1]上二阶连续可导且f(0)=f(1),又|f"(x)|≤M,证明:|f’(x)|≤M/2.
设曲线y=x2+ax+b与曲线2y=xy3-1在点(1,-1)处切线相同,则().
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,P+2)T,α4=(-2,-6,10,p)T.p为何值时,该向量组线性无关?并在此时将向量α=(4,1,6,10)T用α1,α2,α3,α4线性表出.
设曲线L的极坐标方程为r=r(θ),M(r,θ)为L上任一点,M0(2,0)为L上一定点,若极径OM0、OM与曲线L所围成的曲边扇形面积值等于L上M0、M两点间弧长值的一半,求曲线L的方程.
设f(x)在区间(-∞,+∞)上连续,且满足f(x)=∫0xf(x-t)sintdt+x.则在(-∞,+∞)上,当x≠0时,f(x)()
随机试题
Successinthelabdoesn’talwaysmeanimmediatesuccessonalarge________.
A.干烤消毒法B.压力蒸汽灭菌法C.紫外线消毒法D.煮沸法E.过滤除菌法空气可用的消毒方法是
发热后第2天出疹的是
某市疾病控制中心,欲找出对患者的生命威胁最大的疾病,以便制定防治对策,需要计算和评价的统计指标为
A、降逆止呕B、润肠通便C、利水消肿D、燥湿化痰E、制酸止痛瓦楞子除能消痰软坚外,又能
工程咨询的投资项目包括(),不同类型项目的咨询评价方法是不同的。
玻璃钢门窗的生产方式有()。
某机械公司经销一种小型机械的销售单价为1500元/台,单位商品的变动成本为1250元/台,固定成本分摊为6万元。公司要求该种小型机械在计划期内实现目标盈利额为4万元。求计划期的该小型机械内保利销售量为多少台()。
[音]奏鸣曲
TheMoralityTestA)FromcancertoAlzheimer’s(早老性痴呆病)todiabetes,advancesingeneticsciencemeanthatmanyofusares
最新回复
(
0
)