首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
袋中有大小相同的10个球,其中6个红球,4个白球,现随机地抽取两次,每次取一个,定义两个随机变量X,Y如下: 试就放回与不放回两种情形,求出(X,Y)的联合分布律.
袋中有大小相同的10个球,其中6个红球,4个白球,现随机地抽取两次,每次取一个,定义两个随机变量X,Y如下: 试就放回与不放回两种情形,求出(X,Y)的联合分布律.
admin
2018-06-15
58
问题
袋中有大小相同的10个球,其中6个红球,4个白球,现随机地抽取两次,每次取一个,定义两个随机变量X,Y如下:
试就放回与不放回两种情形,求出(X,Y)的联合分布律.
选项
答案
(X,Y)是二维离散型随机变量,其全部可能取值为(0,0),(0,1),(1,0),(1,1). (Ⅰ)有放回抽取,由于X与Y相互独立,则 P{X=i,Y=j}=P{X=i}P{Y=j},i,j=0,1, P{X=0,Y=0}=P{X=0}P{Y=0}=0.4
2
=0.16, P{X=0,Y=1}=P{X=0}P{Y=1}=[*]=0.24, P{X=1,Y=0}=P{X=1}P{Y=0}=[*]=0.24, P{X=1,Y=1}=P{X=1}P{Y=1}=0.6
2
=0.36. (Ⅱ)不放回抽取, P{X=i,Y=j}=P{X=i}P{Y=j|X=i},i,j=0,1, P{X=0,Y=0}=P{X=0}P{Y=0|X=0} [*] P{X=0,Y=1}=P{X=0}P{Y=|X=0} [*] P{X=1,Y=0}=P{X=1}P{Y=0|X=1} [*] P{X=1,Y=1}=P{X=1}P{Y=1|X=1} [*] 由此可见,无论是有放回还是不放回抽取其边缘分布律X,Y都相同且都服从参数为0.6的0.1分布,且当有放回抽取时X与Y独立;无放回抽取时X与Y不独立.
解析
转载请注明原文地址:https://kaotiyun.com/show/6Xg4777K
0
考研数学一
相关试题推荐
设R3中两个基α1=[1,1,0]=,α2=[0,1,1]T,α3=[1,0,1]T;β1=[-1,0,0]T,β2=[1,1,0]T,β3=[1,1,1]T求β1,β2,β3到α1,α2,α3的过渡矩阵;
已知3阶矩阵A有特征值λ1=1,λ2=2,λ3=3,则2A*的特征值是()
求微分方程y’’(3y’2-x)=y’满足初值条件y(1)=y’(1)=1的特解.
求微分方程y’’-2y’-e2x=0满足条件y(0)=1,y’(0)=1的特解.
在下列区域D上,是否存在原函数?若存在,求出原函数.D:x2+y2>0;
记平面区域D={(x,y)|x|+|y|≤1),计算如下二重积分:I2=∫∫D(eλx-e-λy)dσ,常数λ>0.
设f(x,y)在点(0,0)处连续,且其中a,b,c为常数.讨论f(x,y)在点(0,0)处是否可微,若可微则求出df(x,y)|(0,0);
设二次型f(x1,x2,x3)=x12+4x22+2x32+2Tx1x2+2x1x3为正定二次型,求t的范围.
设A=,已知A有三个线性无关的特征向量且λ=2为矩阵A的二重特征值,求可逆矩阵A,使得A—1AP为对角矩阵.
某种食品防腐剂含量X服从N(μ,σ2)分布,从总体中任取20件产品,测得其防腐剂平均含量为=10.2,标准差为s=0.5099,问可否认为该厂生产的产品防腐剂含量显著大于10(其中显著性水平为α=0.05)?
随机试题
在病例对照研究中,变量的的测量应尽可能的采用
下列关于牙颌面畸形的叙述哪项是错误的()
下图为深圳万科城市花园住宅组团,其设计采用的布置方法是:
机构如图,杆ED的点H由水平绳拉住,其上的销钉C置于杆AB的光滑直槽中,各杆重均不计。已知FP=10kN。销钉C处约束力的作用线与x轴正向所成的夹角为()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
莎士比亚戏剧中体现的很多观点、态度和思想——莎士比亚本人是否赞同有待探究,但放在今天无论如何是难以接受的。其中确有赤裸裸的政治不正确之处,弄得一些改编作品简直就像在讨伐莎士比亚。不过,这些貌似不敬的行为反倒是帮了莎士比亚的大忙。因为这些莎士比亚原作的衍生作
决策支持系统通过它的输出接口产生报告、数据库查询结果和模型的模拟结果,这些结果又提供了对决策过程中哪项的支持?
在美国国防部的可信任计算机标准评估准则中,安全等级最高的是()。
下列关于IPS的描述中,正确的是()。
Wehavetoaskthemtoquittalkinginorderthatallpeoplepresentcouldhearusclearly.
最新回复
(
0
)