首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]二阶可导,|f(0)|≤a,|f(1)|≤a,|f’’(x)|≤b,a,b为非负数,求证:∈(0,1),有 |f’(c)|≤2a+b.
设f(x)在[0,1]二阶可导,|f(0)|≤a,|f(1)|≤a,|f’’(x)|≤b,a,b为非负数,求证:∈(0,1),有 |f’(c)|≤2a+b.
admin
2018-06-27
63
问题
设f(x)在[0,1]二阶可导,|f(0)|≤a,|f(1)|≤a,|f’’(x)|≤b,a,b为非负数,求证:
∈(0,1),有
|f’(c)|≤2a+
b.
选项
答案
考察带拉格朗日余项的一阶泰勒公式:[*]∈[0,1],[*]∈(0,1),有 f(x)=f(c)+f’(c)(x-c)+[*]f’’(ξ)(x-c)
2
, (*) 其中ξ=c+θ(x-c),0<θ<1. 在(*)式中,令x=0,得f(0)=f(c)+f’(c)(-c)+[*]f’’(ξ
1
)c
2
,0<ξ
1
<c<1; 在(*)式中,令x=1,得f(1)=f(c)+f’(c)(1-c)+[*]f’’(ξ
2
)(1-c)
2
,0<c<ξ
2
<1. 上面两式相减得 f(1)-f(0)=f’(c)+[*][f’’(ξ
2
)(1-c)
2
-f’’(ξ
1
)c
2
]. 从而f’(c)=f(1)-f(0)+[*][f’’(ξ
1
)c
2
-f’’(ξ
2
)(1-c)
2
],两端取绝对值并放大即得 |f’(c)|≤2a+[*]b[(1-c)
2
+c
2
]≤2a+[*]b(1-c+c)=2a+[*]b. 其中利用了对任何c∈(0,1)有(1-c)
2
≤1-c,c
2
≤c,于是(1-c)
2
+c
2
≤1.
解析
转载请注明原文地址:https://kaotiyun.com/show/6dk4777K
0
考研数学二
相关试题推荐
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系,证明:η,η+ξ1,η+ξ2,…,η+ξn-r是Ax=b的n一r+1个线性无关解;
设二次型f(x1,x2,x3,x4)=x12+2x1x2-x22+4x2x3一x32—2ax3x4+(a一1)2x2的规范形式为y12+y22一y32,则参数a=_______.
设平面区域则正确的是()
(2012年试题,二)设y=y(x)是由方程x2一y+1=ey所确定的隐函数,则__________.
设A>0,D是由曲线段y=Asinx(0≤x≤)及直线y=0,x=所围成的平面区域,V1,V2分别表示D绕x轴与绕y轴旋转所成旋转体的体积,若V1=V2,求A的值.
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组Ax=0的通解.
设A为三阶矩阵,且|A|=4,则=_______
求f(χ)=3χ带拉格朗日余项的n阶泰勒公式.
对数螺线r=eθ在点(r,θ)=处的切线的直角坐标方程为______.
随机试题
经济体制改革的核心问题是处理好()的关系问题。
简论艺术想象力及其作用
班级授课制产生于()
A.兴奋β2受体B.阻断M受体C.阻断H受体D.抗组胺E.抑制磷酸二酯酶以下药物的作用机制是沙丁胺醇的作用机制是
属于局部麻醉药的是
青光眼应慎用的是()
在人员招聘和录用过程中需要完成的工作包括()。[2005年真题]
男子以无须为美,左耳戴大耳珠的民族是( )。
在下列叙述中,错误的一条是()
SuccessfulLanguageLearners1.Somepeopleseemtohaveaknackforlearninglanguages.Theycanpickupnewvocabulary,mast
最新回复
(
0
)