首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶实对称矩阵,A2+2A=0,r(A)=2,且A+kE为正定矩阵。其中E为3阶单位矩阵,则k满足的条件为( )
设A为3阶实对称矩阵,A2+2A=0,r(A)=2,且A+kE为正定矩阵。其中E为3阶单位矩阵,则k满足的条件为( )
admin
2021-04-16
120
问题
设A为3阶实对称矩阵,A
2
+2A=0,r(A)=2,且A+kE为正定矩阵。其中E为3阶单位矩阵,则k满足的条件为( )
选项
A、k>2
B、k≥2
C、k<-3
D、k≤-3
答案
A
解析
设λ为A的特征值,对应的特征向量为α(α≠0),则Aα=λα,于是(A
2
+2A)α=(λ
2
+2λ)α=0,又由于α≠0,故有λ
2
+2λ=0,解得λ=-2,λ=0,因为实对称矩阵A必可相似对角化,又r(A)=2,所以A~A=
。
因此,A的特征值为λ
1
=λ
2
=-2,λ
3
=0,矩阵A+kE的特征值为-2+k,-2+k,k,于是,A+kE为正定矩阵当且仅当A+kE的特征值全大于零,这等价于k>2,对于实对称矩阵A,存在可逆矩阵P,使得p
-1
AP=A,于是A+kE=PAP
-1
+kPP
-1
=P(A+kE)P
-1
,所以A+kE~A+kE=
,
因此A+kE正定的充分必要条件是其顺序主子式均大于0,即k需满足k-2>0,(k-2)
2
>0,(k-2)
2
k>0,由此也可得到k>2的条件。
转载请注明原文地址:https://kaotiyun.com/show/6dx4777K
0
考研数学三
相关试题推荐
设A为n阶非零方阵,且∣A∣=0,则∣A*∣_______.
设二维随机变量X和Y的联合概率密度为f(x,y)=y的联合分布F(x,y).
A、 B、 C、 D、 D
已知向量组α1=(1,2,一1,1),α2=(2,0,t,0),α3=(0,一4,5,一2)的秩为2,则t=_______.
计算二重积分,其中D为x2+y2=1,x2+y2=2x所围中间一块区域.
设矩阵A是秩为2的4阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2一α3=(2,0,一5,4)T,α2+2α3=(3,12,3,3)T,α3—2α1=(2,4,1,一2)T,则方程组Ax=b的通解x=
设随机变量X,Y相互独立,X在区间[0,5]上服从均匀分布,Y服从参数为1的指数分布.令Z=max{X,Y}.(1)求随机变量Z=max(X,Y)的概率密度;(2)计算P(X+Y>1).
设矩阵有解但不唯一。(I)求a的值;(Ⅱ)求可逆矩阵P,使得P一1AP为对角矩阵;(Ⅲ)求正交矩阵Q,使得QTAQ为对角矩阵。
从抛物线y=x2—1的任意一点P(t,t2—1)引抛物线y=x2的两条切线。(Ⅰ)求这两条切线的切线方程;(Ⅱ)证明该两条切线与抛物线y=x2所围面积为常数.
设两个随机变量X与Y相互独立且同分布:P(X=-1)=P(y=-1)=1/2,P(X=1)=P(Y-1)=1/2,则下列各式中成立的是().
随机试题
如果B市仲裁委员会受理了甲公司的仲裁申请,并向乙公司发出书面的仲裁通知,但乙公司拒绝提交书面答辩,并在确定的开庭审理之日没有出席,此时会对仲裁程序有何影响?()。如果甲公司与乙公司对该仲裁条款的效力产生了争议,甲公司向B市仲裁机构申请确认仲裁条
下列各种情况,需要进行全面财产清查的有()。
三级跳远由_______助跑,沿_______向前的连续三次跳跃组成。
下列关于法律基础知识的表述正确的是:
A、 B、 C、 A根据“吉姆足球踢得很好。”可知答案为A。
思想是可以通过词语来表达的。
Beijing:TheUnitedStatesandNorthKoreahadtheirfirst【C1】______infourmonthsherethisafternoonaspartofthe【C2】______
AremarkablethinghappenedinNewYorkrecently:thestatelegislature,ineffect,turneddownthechancetowin$700millioni
Thehomesecretary,CharlesClarke,willtodayguaranteethatthepersonaldetailscontainedonthenationalidentitycardwill
Whilecrossingtheprimitiveforest,theyallhadgunswiththemforprotectionforfearthatthey______bythewildanimals.
最新回复
(
0
)