首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,…,αn是n维列向量,其中α1≠0,若Aα1=α2,Aα2=α3,…,Aαn—1=αn,Aαn=0. (1)证明:α1,α2,…,αn线性无关. (2)求A的特征值、特征向量.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,其中α1≠0,若Aα1=α2,Aα2=α3,…,Aαn—1=αn,Aαn=0. (1)证明:α1,α2,…,αn线性无关. (2)求A的特征值、特征向量.
admin
2017-07-26
70
问题
设A是n阶矩阵,α
1
,α
2
,…,α
n
是n维列向量,其中α
1
≠0,若Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n—1
=α
n
,Aα
n
=0.
(1)证明:α
1
,α
2
,…,α
n
线性无关.
(2)求A的特征值、特征向量.
选项
答案
(1)设k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0, ① 据已知条件,有 Aα
1
=α
2
, A
2
α
1
=Aα
2
=α
3
,…, A
n—1
α
1
=A
n—2
α
2
=…—Aα
n—1
=α
n
, A
n
α
1
=A
n—1
α
2
=…=Aα
n
=0, 于是,用A
n—1
左乘①式,得 k
1
α
n
=0. 由于α
n
≠0,得k
1
=0. 再依次用A
n—2
,A
n—3
,…,左乘①式,可得到k
1
=k
2
=…=k
n
=0,所以α
1
,α
2
,…,α
n
线性无关. (2)将Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n
=0用矩阵表示为 A[α
1
,α
2
,…,α
n
]=[α
1
,α
2
,…,α
n—1
,0] =[α
1
,α
2
,…,α
n
][*] 从α
1
,α
2
,…,α
n
线性无关知,矩阵[α
1
,α
2
,…,α
n
]可逆,从而 [*] 得知A的特征值全为0,又因r(A)=r(B)n—1,所以齐次方程组Ax=0的基础解系仅由n一(n一1)—1个向量组成,所以A的全部特征向量为kα
n
,k≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/6rH4777K
0
考研数学三
相关试题推荐
设f(x,y)在[a,b]×[c,d]上连续,,证明:gxy=gyx(x,y)=f(x,y)(a<x<b,c<y<d).
设A为n阶非奇异矩阵,a是n维列向量,b为常数,P=(Ⅰ)计算PQ;(Ⅱ)证明PQ可逆的充分必要条件是aTA-1a≠b.
已知非齐次线性方程组x1+x2+x3+x4=-1;4x1+3x2+5x3-x4=-1;ax1+x2+3x3+bx4=-1;有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
已知A是3阶矩阵,A*是A的伴随矩阵,如果矩阵A的特征值是1,2,3,那么矩阵(A*)*的最大特征值是__________.
设A是n阶反对称矩阵,举一个4阶不可逆的反对称矩阵的例子;
齐次方程组的系数矩阵为A,若存在三阶矩阵B≠0,使得AB=0,则().
设A是m×n矩阵,则下列4个命题①若r(A)=m,则非齐次线性方程组Ax=b必有解;②若r(A)=m,则齐次方程组Ax=0只有零解;③若r(A)=n,则非齐次线性方程组Ax=b有唯一解;④若r(A)=n,则齐次方程组Ax=0只有零解中正确的是
随机试题
下列选项中,作为税法的核心要素的是()
患者,男,56岁。患糖尿病10年,一直采用饮食控制疗法,空腹血糖持续在:10mmol/L以上。近5年来,口服降糖药物格列本脲和阿卡波糖仍未获得良好控制,需采用胰岛素治疗。(2009年第108题)下列选项中,属于长效胰岛素的是
具有清热燥湿,杀虫止痒的药物是
以下项目中不属实热证的舌象为
下列现象中,不属于教育现象的是()。
毛泽东在《论十大关系》的报告中,初步提出了中国社会主义经济建设的若干新方针。其涉及的主要问题是
在进行POE链路预算时,已知光纤线路长5km,下行衰减0.3dB/km:热熔连接点3个,衰减0.1dB/个;分光比1:8:衰减10.3dB:光纤长度冗余衰减1dB。下行链路衰减的值是(48)________________。
软件的( )设计又称总体结构设计,其主要任务是建立软件系统的总体结构。
PublicHealthPakistanPositionAvaiiabie:DivisionofPublicHeaithandClinicalNutrition.TheUni
Unlikemostsports,whichevolvedovertimefromstreetgames,basketballwasdesignedbyonemantosuita【C1】______purpose.
最新回复
(
0
)