首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,…,αn是n维列向量,其中α1≠0,若Aα1=α2,Aα2=α3,…,Aαn—1=αn,Aαn=0. (1)证明:α1,α2,…,αn线性无关. (2)求A的特征值、特征向量.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,其中α1≠0,若Aα1=α2,Aα2=α3,…,Aαn—1=αn,Aαn=0. (1)证明:α1,α2,…,αn线性无关. (2)求A的特征值、特征向量.
admin
2017-07-26
36
问题
设A是n阶矩阵,α
1
,α
2
,…,α
n
是n维列向量,其中α
1
≠0,若Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n—1
=α
n
,Aα
n
=0.
(1)证明:α
1
,α
2
,…,α
n
线性无关.
(2)求A的特征值、特征向量.
选项
答案
(1)设k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0, ① 据已知条件,有 Aα
1
=α
2
, A
2
α
1
=Aα
2
=α
3
,…, A
n—1
α
1
=A
n—2
α
2
=…—Aα
n—1
=α
n
, A
n
α
1
=A
n—1
α
2
=…=Aα
n
=0, 于是,用A
n—1
左乘①式,得 k
1
α
n
=0. 由于α
n
≠0,得k
1
=0. 再依次用A
n—2
,A
n—3
,…,左乘①式,可得到k
1
=k
2
=…=k
n
=0,所以α
1
,α
2
,…,α
n
线性无关. (2)将Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n
=0用矩阵表示为 A[α
1
,α
2
,…,α
n
]=[α
1
,α
2
,…,α
n—1
,0] =[α
1
,α
2
,…,α
n
][*] 从α
1
,α
2
,…,α
n
线性无关知,矩阵[α
1
,α
2
,…,α
n
]可逆,从而 [*] 得知A的特征值全为0,又因r(A)=r(B)n—1,所以齐次方程组Ax=0的基础解系仅由n一(n一1)—1个向量组成,所以A的全部特征向量为kα
n
,k≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/6rH4777K
0
考研数学三
相关试题推荐
设f(x,y)在[a,b]×[c,d]上连续,,证明:gxy=gyx(x,y)=f(x,y)(a<x<b,c<y<d).
设n阶矩阵A的各列元素之和为2且|A|=4,则它的伴随矩阵A的各列元素之和为_____.
已知实二次型f(x1,x2,x3)=a(x11+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
齐次方程组的系数矩阵为A,若存在三阶矩阵B≠0使得AB=0,则
设A是n阶反对称矩阵,证明:如果λ是A的特征值,那么一λ也必是A的特征值.
设中与A等价的矩阵有()个.
设A是m×n阶矩阵,下列命题正确的是().
已知线性方程Ax=β的增广矩阵可化为且方程组有无穷多解,则参数A的取值必须满足().
随机试题
简述有限责任公司的股东构成。
关于Windows的对话框,下列描述错误的是_______。
老年人咯血应警惕()
血清Ⅳ型胶原浓度
A、APTTB、PTC、D-二聚体D、FDPE、TT确定继发性纤溶的最佳实验室指标是
下列药品是混悬液的为
下列有关航站楼弱点设施施工工序顺序表述中正确的是()。
你是市环保局的工作人员,现在单位要在两所小学开展垃圾分类宣传教育,领导让你负责,你怎么办?
下列选项蕴涵矛盾的同一性的是()
请在【答题】菜单下选择【进入学牛文件夹】命令,并按照题目要求完成下面的操作。注意:以下的文件必须保存在考生文件夹下。为了更好地控制教材编写的内容、质量和流程,小李负责起草了图书策划方案。他将图书策划方案Word文档中的内容制作成了可以向教材编委会进行展
最新回复
(
0
)