首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设f(x)在[x0,x0+δ)((x0-δ,x0])连续,在(x0,x0+δ)((x0-δ,x0))可导,又,求证:f’+(x0)=A (f’-(x0)=A). (Ⅱ)设f(x)在(x0-δ,x0+δ)连续,在(x0-δ,x0+δ)/{x0}可导,
(Ⅰ)设f(x)在[x0,x0+δ)((x0-δ,x0])连续,在(x0,x0+δ)((x0-δ,x0))可导,又,求证:f’+(x0)=A (f’-(x0)=A). (Ⅱ)设f(x)在(x0-δ,x0+δ)连续,在(x0-δ,x0+δ)/{x0}可导,
admin
2017-12-23
82
问题
(Ⅰ)设f(x)在[x
0
,x
0
+δ)((x
0
-δ,x
0
])连续,在(x
0
,x
0
+δ)((x
0
-δ,x
0
))可导,又
,求证:f’
+
(x
0
)=A (f’
-
(x
0
)=A).
(Ⅱ)设f(x)在(x
0
-δ,x
0
+δ)连续,在(x
0
-δ,x
0
+δ)/{x
0
}可导,又
=A,求证:f’(x
0
)=A.
(Ⅲ)设f(x)在(a,b)可导,x
0
∈(a,b)是f’(x)的间断点,求证:x=x
0
是f’(x)的第二类间断点.
选项
答案
(Ⅰ)f’
+
(x
0
)[*]=A.另一类似. (Ⅱ)由题(Ⅰ)=>f’
+
(x
0
)=f’
-
(x
0
)=A=>f’(x
0
)=A.或类似题(Ⅰ),直接证明 [*] (Ⅲ)即证[*]中至少有一个不[*].若它们均存在,[*],由题(Ⅰ)=>f’
±
(x
0
)=A
±
.因f(x)在x
0
可导=>A
+
=A
-
=f’(x
0
)=>f’(x)在x=x
0
连续,与已知矛盾.因此,x=x
0
是f’(x)的第二类间断点.
解析
转载请注明原文地址:https://kaotiyun.com/show/71k4777K
0
考研数学二
相关试题推荐
1-α
[*]
曲线的渐近线有
设函数y(x)由参数方程确定,求曲线y=y(x)向上凸的x取值.
设函数y=y(x)由参数方程确定。其中x(t)是初值问题
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设z=f(2x-y,ysinx),其中f具有连续的二阶偏导数,求
设矩阵A,B满足A*BA=2BA-8E,其中A=,层为单位矩阵,A*为A的伴随矩阵,则B:__________.
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
5kg肥皂溶于300L水中后,以每分钟10L的速度向内注入清水,同时向外抽出混合均匀的肥皂水,问何时余下的肥皂水中只有1kg肥皂.
随机试题
题6图所示门电路的输出表达式为【】
The"standardofliving"ofanycountrymeanstheaverageperson’sshareofthegoodsandserviceswhichthecountryproduces.A
盐酸普鲁卡因可与NaNO2液反应后,再与碱性β—萘酚偶合成猩红染料,其依据为()
慢性阻塞性肺疾病最主要的病理生理特征是
以下关于承揽合同解除的说法中不正确的是?
某实施监理的工程,建设单位与施工单位按照“建设工程施工合同(示范文本)”签订了施工合同。项目监理机构批准的施工进度计划如下图所示,各项工作均按最早开始时间安排,匀速进行。施工过程中发生如下事件:事件1:施工准备期间,由于施工设备未按期进场,施
在新的历史条件下,与马克思所处的时代相比,深化对创造价值的劳动的认识主要有()。
设n阶矩阵A和B满足条件A+B=AB.已知,求矩阵A.
Somenarrativesseemmorelikeplays,heavywithdialoguebywhichwritersallowtheir_____torevealthemselves.
A、Accuratecommunicationisofutmostimportance.B、Pilotsshouldbeabletospeakseveralforeignlanguages.C、Aircontrollers
最新回复
(
0
)