首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1、λn分别为n阶实对称矩阵A的最小和最大特征值,X1、Xn分别为对应于λ1和λn的特征向量,记 f(X)=,X∈Rn,X≠0 证明:λ1≤f(X)≤λn,minf(X)=λ1=f(X1),maxf(X)=λn=f(Xn).
设λ1、λn分别为n阶实对称矩阵A的最小和最大特征值,X1、Xn分别为对应于λ1和λn的特征向量,记 f(X)=,X∈Rn,X≠0 证明:λ1≤f(X)≤λn,minf(X)=λ1=f(X1),maxf(X)=λn=f(Xn).
admin
2018-08-02
32
问题
设λ
1
、λ
n
分别为n阶实对称矩阵A的最小和最大特征值,X
1
、X
n
分别为对应于λ
1
和λ
n
的特征向量,记
f(X)=
,X∈R
n
,X≠0
证明:λ
1
≤f(X)≤λ
n
,minf(X)=λ
1
=f(X
1
),maxf(X)=λ
n
=f(X
n
).
选项
答案
只证最大值的情形(最小值情形的证明类似):必存在正交变换X=PY(P为正交矩阵,y=(y
1
,…,y
n
)
T
),使得X
T
AX[*]=λ
1
y
1
2
+…+ λ
n
y
n
2
≤λ
n
(y
1
2
+…+y
n
2
)=λ
n
‖Y‖
2
,由于正交变换不改变向量长度,故有‖Y‖
2
=‖X‖
2
=X
T
X,上式即X
T
AX≤λ
n
X
T
X,当X≠0时,X
T
X>0,即得f(X)=[*]≤λ
n
,又f(X
n
)=[*]=λ
n
,于是得maxf(X)=λ
n
.
解析
转载请注明原文地址:https://kaotiyun.com/show/72j4777K
0
考研数学二
相关试题推荐
设ξ1=为矩阵A=的一个特征向量.(I)求常数a,b及ξ1所对应的特征值;(Ⅱ)矩阵A可否相似对角化?若A可对角化,对A进行相似对角化;若A不可对角化,说明理由.
设非齐次线性方程组有三个线性无关解α1,α2,α3,(Ⅰ)证明系数矩阵的秩r(A)=2;(Ⅱ)求常数a,b及通解.
设矩阵A=相似于矩阵B= (I)求a,b的值; (II)求可逆矩阵P,使P-1AP为对角矩阵.
已知函数f(x)在区间[a,+∞)上具有2阶导数,f(a)=0,(x)>0,(x)>0,设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明a<x0<b.
证明:对任意的x,y∈R且x≠y,有
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在η∈(a,b),使得ηf’(η)+f(η)=0.
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
设A为n阶矩阵,且|A|=0,则A().
随机试题
重症肺炎可引起哪些消化系统并发症
A.听觉系统B.心血管系统C.急慢性疾病和某些癌变D.免疫力E.血液循环环境噪声常影响
邓某因抢夺罪被人民法院判处有期徒刑3年,其不服提起上诉,同时检察院也提出抗诉,二审法院认为邓某的行为构成抢劫罪,在改变罪名的同时,改判邓某有期徒刑5年。下列说法中正确的是哪项?()
组织流水施工时,如果按专业成立专业工作队,则其特点有( )。
某水利枢纽工程,主要工程项目有大坝、泄洪闸、引水洞、发电站等,2003年2月开工,2004年6月申报文明建设工地,此时已完成全部建安工程量的25%。有关主管部门为加强质量管理,在工地现场成立了由省水利工程质量监督中心站以及工程项目法人、设计单位和监理单位
对会议文件资料分发传递的首要工作是()。
正是因为有了充足的奶制品作为食物来源,生活在呼伦贝尔大草原的牧民才能摄入足够的钙质。很明显,这种足够的钙质,对呼伦贝尔大草原的牧民拥有健壮的体魄是必不可少的。以下哪项情况如果存在.最能削弱上述断定?
简述转继承和代位继承的区别。
某二叉树共有12个结点,其中叶子结点只有1个。则该二叉树的深度为(根结点在第1层)()。
—Whatwasitthatcausedthepartytobeputoff?—______theinvitations.
最新回复
(
0
)