首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1、λn分别为n阶实对称矩阵A的最小和最大特征值,X1、Xn分别为对应于λ1和λn的特征向量,记 f(X)=,X∈Rn,X≠0 证明:λ1≤f(X)≤λn,minf(X)=λ1=f(X1),maxf(X)=λn=f(Xn).
设λ1、λn分别为n阶实对称矩阵A的最小和最大特征值,X1、Xn分别为对应于λ1和λn的特征向量,记 f(X)=,X∈Rn,X≠0 证明:λ1≤f(X)≤λn,minf(X)=λ1=f(X1),maxf(X)=λn=f(Xn).
admin
2018-08-02
49
问题
设λ
1
、λ
n
分别为n阶实对称矩阵A的最小和最大特征值,X
1
、X
n
分别为对应于λ
1
和λ
n
的特征向量,记
f(X)=
,X∈R
n
,X≠0
证明:λ
1
≤f(X)≤λ
n
,minf(X)=λ
1
=f(X
1
),maxf(X)=λ
n
=f(X
n
).
选项
答案
只证最大值的情形(最小值情形的证明类似):必存在正交变换X=PY(P为正交矩阵,y=(y
1
,…,y
n
)
T
),使得X
T
AX[*]=λ
1
y
1
2
+…+ λ
n
y
n
2
≤λ
n
(y
1
2
+…+y
n
2
)=λ
n
‖Y‖
2
,由于正交变换不改变向量长度,故有‖Y‖
2
=‖X‖
2
=X
T
X,上式即X
T
AX≤λ
n
X
T
X,当X≠0时,X
T
X>0,即得f(X)=[*]≤λ
n
,又f(X
n
)=[*]=λ
n
,于是得maxf(X)=λ
n
.
解析
转载请注明原文地址:https://kaotiyun.com/show/72j4777K
0
考研数学二
相关试题推荐
(2007年试题,一)设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
设非齐次线性方程组有三个线性无关解α1,α2,α3,(Ⅰ)证明系数矩阵的秩r(A)=2;(Ⅱ)求常数a,b及通解.
设矩阵A=相似于矩阵B= (I)求a,b的值; (II)求可逆矩阵P,使P-1AP为对角矩阵.
设矩阵A=b=若集合Ω={1,2},则线性方程组Ax=b有无穷多解的充分必要条件为
证明:对任意的x,y∈R且x≠y,有
设A是,n阶矩阵,下列结论正确的是().
设A,B都是n阶矩阵,其中B是非零矩阵,且AB=O,则().
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
随机试题
最常见的病毒形态为()
A.生物因素B.环境C.社会心理D.卫生服务制度E.行为和生活方式由于家庭装修导致男性不育,影响健康的主要因素为
X线管具有高度的真空能够
女性,农民,烧伤总面积70%,1小时后送人当地卫生院并准备转上级医院治疗,当地卫生院在作医疗处理时应首先考虑
对合金钢的焊接产品必须进行两次外部检查。()
发包人依法具有监督管理权,其义务主要是()。
下图是美国20世纪30年代初公开销毁牛奶的现象。这种现象说明()。
目前,因特网使用的IP协议的版本号为______。
We’reworking______theclocktoaccomplishtheproposalbeforeTuesday.
【S1】【S8】
最新回复
(
0
)