首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆 矩阵P,使得P-1AP为对角矩阵.
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆 矩阵P,使得P-1AP为对角矩阵.
admin
2018-01-23
46
问题
设A=
有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆
矩阵P,使得P
-1
AP为对角矩阵.
选项
答案
因为A有三个线性无关的特征向量,所以λ=2的线性无关的特征向量有两个,故 r(2E-A)=1, 而2E-A=[*],所以x=2,y=-2. 由|λE-A|=[*]=(λ-2)
2
(λ-6)=0得λ
1
=λ
2
=2,λ
3
=6. 由(2E-A)X=0得λ=2对应的线性无关的特征向量为α
1
=[*], 由(6E-A)X=0得λ=6对应的线性无关的特征向量为α
3
=[*], [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/7AX4777K
0
考研数学三
相关试题推荐
已知f′(x)=arctan(x-1)2,f(0)=0,则f(x)dx=___________.
已知矩阵A=(Ⅰ)求A99,(Ⅱ)设3阶矩阵B=(a1,a2,a3)满足B2=BA.记B100=(β1,β2,β3,风),将Jβ1,β2,β3分别表示为a1,a2,a3的线性组合.
证明不等式
设矩阵Am×n经过若干次初等行变换后得到B,下面4个结论正确的是()①A的行向量均可由B的行向量线性表示;②A的列向量均可由B的列向量线性表示;③B的行向量均可由A的行向量线性表示;④B的列向量均可由A的列向量线性表示。
求极限
设a1,a2,a3均为3维列向量,记矩阵A=(a1,a2,a3),B=(a1+a2+a3,a1+2a2+4a3,a1+3a2+9a3)如果∣A∣=1,则∣B∣=_______.
设生产函数为Q=ALαKβ,其中Q是产出量,L是劳动投入量,K是资本投入量,而A,α,β均为大于零的参数,则当Q=1时K关于L的弹性为__________.
设总体X的分布函数为(X1,X2,…,X10)为来自总体X的简单随机样本,其观察值为1,1,3,1,0,0,3,1,0,1求参数θ的极大似然估计值.
设总体X的密度函数为f(x)=其中θ>-1是未知参数,X1,X2,…,Xn是来自总体X的简单随机样本.求θ的最大似然估计量.
随机试题
应激状态时不出现
下列不符合肺腺癌描述的是
土地供求关系是指土地经济供给与人们对某些土地用途需求之间的关系。
人防指挥工程的建设应注意的问题不包括()。
甲建筑工程公司下辖3个施工队、1个招待所(均为非独立核算单位),本年经营业务如下:(1)承包某建筑工程项目,并与建设方签订了建筑工程总包合同,总包合同明确工程总造价3000万元。(2)甲建筑工程公司将其中200万元的建筑工程项目分包给乙建筑工程公司。(3)
______是群体发展的最高阶段,成员的共同活动不仅对每个成员有个人意义,而且还有重要的社会意义。
公路客运方面:10月5日共发送客车3546车次,发送旅客5.45万人次;抵达客车1472车次,抵达旅客1.88万人次。民航方面:10月5日共发送航班236班次,发送旅客3.25万人次;抵达航班233班次,抵达旅客2.83万人次。10月5日,
Humansarestartlinglybadatdetectingfraud.Evenwhenwe’reonthelookoutforsignsofdeception,studiesshow,ouraccuracy
Welookforwardto______totheopeningceremony.
Thisroadisvery(danger)______becausetherewerefiveseriousaccidentslastyear.
最新回复
(
0
)