首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上可导,且∫01xf(x)dx=f(1),试证:存在点ξ∈(0,1),使得ξf’(ξ)+f(ξ)=0.
设f(x)在[0,1]上可导,且∫01xf(x)dx=f(1),试证:存在点ξ∈(0,1),使得ξf’(ξ)+f(ξ)=0.
admin
2019-03-12
109
问题
设f(x)在[0,1]上可导,且∫
0
1
xf(x)dx=f(1),试证:存在点ξ∈(0,1),使得ξf’(ξ)+f(ξ)=0.
选项
答案
令F(x)=xf(x),则F(x)在[0,1]上连续,在(0,1)内可导.由积分中值定理,存在c∈[0,1],使得 f(1)=cf(c).于是,有F(c)=cf(c)=F(1)=f(1). 所以,F(z)在[c,1][*][0,1]上满足洛尔定理的全部条件,由洛尔定理,存在∈E(0,1),使 ξf’(ξ)+f(ξ)=0.
解析
因待证结论中含有导数,所以应先构造辅助函数,再用洛尔定理来证明.
要证的结论为:ξf’(ξ)+f(ξ)=0→xf’(x)+f(x)=0→f’(x)+
f(x)=0.
由一阶齐次线性方程的通解公式得:f(x)=
,即xf(x)=c.
取F(x)=xf(x)作为辅助函数,于是只需验证F(x)满足洛尔定理的全部条件.
转载请注明原文地址:https://kaotiyun.com/show/7MP4777K
0
考研数学三
相关试题推荐
设数列{an},{bn}满足—an(n=1,2,3,…),求证:(Ⅰ)若an>0,则bn>0;(Ⅱ)若an>0(n=1,2,3,…)an收敛,则收敛.
设A为3阶实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Ax=0的基础解系,且矩阵A-6E不可逆。(Ⅰ)求齐次线性方程组(A-6E)x=0的通解:(Ⅱ)求正交变换x=Qy将二次型XTAx化为标准形;
曲线在t=0对应点处的法线方程为__________________.
计算n阶行列式,其中α≠β。
微分方程xy’+y=0满足条件y(1)=1的特解为y=________。
该极限式为1∞型未定式,可直接利用重要极限公式[*]进行计算,[*]
袋中有a个白球与b个黑球。每次从袋中任取一个球,取出的球不再放回去,求第二次取出的球与第一次取出的球颜色相同的概率。
设随机变量X的密度函数f(x)=且P{1<X<2}=P{2<X<3},则常数A=________;B=________;概率P{2<X<4}=________;分布函数F(x)=________。
设三阶方阵A=[A1,A2,A3],其中Ai(i=1,2,3)为三维列向量,且A的行列式|A|=一2,则行列式|—A1一2A2,2A2+3A3,一3A3+2A1|=_____________.
证明:不等式:
随机试题
主页通常作为网站的门户网页使用的,其所含的信息量一定是最大的。
Youaregettingtoooldforfootball.You’dbetter______tennisinstead.
(2014年第1题)下列生理功能活动中,主要通过神经反射而完成的调节是
下列哪项因素不能引起烧伤
抵押合同自()之日起生效。
下列关于个人住房贷款合同的说法中,错误的是()。
建立高效的风险管理部门应当固守的两个基本准则是()。
(2015·山东)下列选项中,不属于意义识记行为的是()
以下用于环保、教育、扶贫和农业开发项目的贷款是()。
SavingaCity’sPublicArtAvoidingtrafficjamsinLosAngelesmaybeimpossible,butthecity’scolorfulfreewayrau-rals(
最新回复
(
0
)