首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上可导,且∫01xf(x)dx=f(1),试证:存在点ξ∈(0,1),使得ξf’(ξ)+f(ξ)=0.
设f(x)在[0,1]上可导,且∫01xf(x)dx=f(1),试证:存在点ξ∈(0,1),使得ξf’(ξ)+f(ξ)=0.
admin
2019-03-12
133
问题
设f(x)在[0,1]上可导,且∫
0
1
xf(x)dx=f(1),试证:存在点ξ∈(0,1),使得ξf’(ξ)+f(ξ)=0.
选项
答案
令F(x)=xf(x),则F(x)在[0,1]上连续,在(0,1)内可导.由积分中值定理,存在c∈[0,1],使得 f(1)=cf(c).于是,有F(c)=cf(c)=F(1)=f(1). 所以,F(z)在[c,1][*][0,1]上满足洛尔定理的全部条件,由洛尔定理,存在∈E(0,1),使 ξf’(ξ)+f(ξ)=0.
解析
因待证结论中含有导数,所以应先构造辅助函数,再用洛尔定理来证明.
要证的结论为:ξf’(ξ)+f(ξ)=0→xf’(x)+f(x)=0→f’(x)+
f(x)=0.
由一阶齐次线性方程的通解公式得:f(x)=
,即xf(x)=c.
取F(x)=xf(x)作为辅助函数,于是只需验证F(x)满足洛尔定理的全部条件.
转载请注明原文地址:https://kaotiyun.com/show/7MP4777K
0
考研数学三
相关试题推荐
设总体X的方差存在,X1,X2,…,Xn是取自总体X的简单随机样本,其样本均值和样本方差分别为,S2,则EX2,的矩估计量是
设D={(x,y)|x+y≥1,x2+y2≤1},则I=(x2+y2)dσ的值为
已知四元齐次方程组的解都满足方程式(Ⅱ)x1+x2+x3=0.①求a的值.②求方程组(Ⅰ)的通解.
对于任意两个随机变量X和Y,若E(XY)=E(X)·E(Y),则().
求二重积分,其中D是由曲线r=2(1+cosθ)的上半部分与极轴所围成的区域。
证明4arctanx—x+=0恰有两个实根。
设f(x,y)=,讨论函数f(x,y)在点(0,0)处的连续性与可偏导性.
设随机变量X与Y均服从正态分布N(μ,σ2),则P{max(X,Y)>μ}一P{min(X,Y)<μ}=________。
(2003年)设F(x)=f(x)g(x),其中函数f(x),g(x)在(一∞,+∞)内满足以下条件:f’(x)=g(x),g’(x)=f(x),且f(0)=0,f(x)+g(x)=2ex。(I)求F(x)所满足的一阶微分方程;(Ⅱ)求出F
随机试题
《雷雨》是一出()
如下_______成立,必使p∧q∧r为假。()
一种与生活愿望相结合并指向于未来的想象是( )。
下列穴位中,可治疗瘾疹、湿疹、丹毒等血热性皮外科病的穴位是
关于两组呈正态分布的数值变量资料,但均数相差悬殊,若比较离散趋势,最好选用下列哪项指标
按现行制度,现金日记账和银行存款日记账必须采用订本式账簿。()
培养德、智、体全面发展的社会主义事业的建设者和接班人的根本途径是()。
在教学中最常用的方法是
中断是CPU与外部设备数据交换的重要方式。CPU响应中断时必须具备3个条件,分别为外部提出中断请求,本中断未屏蔽,(4)。CPU响应中断后,必须由(5)提供地址信息,引导程序进入中断服务子程序;中断服务程序的入口地址存放在(6)中。
在VisualFoxPro中,"表"通常是指
最新回复
(
0
)