首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:不等式:xarctanx≥ln(1+x2).
证明:不等式:xarctanx≥ln(1+x2).
admin
2017-12-31
80
问题
证明:不等式:xarctanx≥
ln(1+x
2
).
选项
答案
令f(x)=xarctanx-[*]ln(1+x
2
),f(0)=0.令f’(x)=[*]+arctanx-[*]=arctanx=0,得x=0,因为f’’(x)=[*]>0,所以x=0为f’’(x)的极小值点,也为最小值点,而f(0)=0,故对一切的x,有f(x)≥O,即xarctanx≥[*]ln(1+x
2
).
解析
转载请注明原文地址:https://kaotiyun.com/show/9JX4777K
0
考研数学三
相关试题推荐
设矩阵A=,3维列向量α=(α,1,1)T,已知Aα与α线性相关,则α=_______
设A为3阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3。令P=[α1,α2,α3],求P-1AP。
设有3维列向量问λ取何值时β可由α1,α2,α3线性表示,但表达式不唯一?
设矩阵Am×n正定,证明:存在正定阵B,使A=B2。
设3阶矩阵A与对角矩阵相似,证明:矩阵C=(A—λ1E)(A—λ2E)(A—λ3E)=0.
证明:二次型f(X)=XTAX在XTX=1条件下的最大(小)值等于实对称矩阵A的最大(小)特征值。求三元函数f(x1,x2,x3)=3x12+2x22+3x32+2x1x3在x12+x22+x32=1条件下的最大及最小值,并求最大值点及最小值点。
考虑一元二次方程x2+Bx+C=0,其中B、C分别是将一枚骰子连掷两次先后出现的点数,求该方程有实根的概率p和有重根的概率q。
设随机变量X的分布函数为其中参数α>0,β>1,设X1,X2,…,Xn为来自总体X的简单随机样本。(Ⅰ)当α=1时,求未知参数β的矩估计量;(Ⅱ)当α=1时,求未知参数β的最大似然估计量;(Ⅲ)当β=2时,求未知参数α的最大似然估计量。
设D是由直线x=一2,y=0,y=2以及曲线x=所围成的平面域,则
设其中g(x)有二阶连续导数,且g(0)=1,g’(0)=一1讨论f’(x)在(一∞,+∞)上的连续性.
随机试题
我国标准规定加速器的线性检定周期为
A.十二烷基磺酸钠B.山梨醇C.琼脂D.二氧化钛E.柠檬黄在胶囊剂的附加剂中,可用作明胶空心胶囊增塑剂的是
导致风湿热的病原菌是()。
项目管理信息系统的功能包括( )。
单位和个人从中国境外取得的与纳税有关的发票或者凭证,可直接作为记账核算的凭证。()
2014年,A公司对B厂投资900万元,占有60%的股份。2018年,A公司拟结束投资,并将所占股份全部转让给C厂,双方商定价格为1400万元。截至转让时,B厂净资产为1800万元,其中累计未分配利润和盈余公积为500万元。A公司拟将此项投资全部出让给
综合课程也被称作__________或大范围课程,这种课程的开没既是现代科学发展的需要,也是学生认识和把握科学知识基础的需要。
定金属于约定担保方式,当事人可以约定定金数额,但不得超过主合同标的额的
求的带皮亚诺余项的三阶麦克劳林公式.
A、Allwhalingisbad.B、Commercialwhalingisimmoral.C、Whalingshouldbelimitedonlyforfood.D、TheIWCshouldbereplaced.
最新回复
(
0
)