首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α1,α2,…αn—1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…αn—1均正交的n维非零列向量。证明: ξ1,ξ2线性相关;
设向量α1,α2,…αn—1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…αn—1均正交的n维非零列向量。证明: ξ1,ξ2线性相关;
admin
2019-05-11
52
问题
设向量α
1
,α
2
,…α
n—1
是n—1个线性无关的n维列向量,ξ
1
,ξ
2
是与α
1
,α
2
,…α
n—1
均正交的n维非零列向量。证明:
ξ
1
,ξ
2
线性相关;
选项
答案
令A=(α
1
,α
1
,…,α
n—1
)
T
,则A是(n一1)×n矩阵,且r(A)=n一1。由已知条件可知 α
i
T
ξ
j
=0(i=1,2,…,n一1;j=1,2), 即 Aξ
j
=0(j=1,2), 这说明ξ
1
,ξ
2
是齐次线性方程组Ax=0的两个解向量。但Ax=0的基础解系中所含向量的个数为n一r(A)=n一(n一1)=1,所以解向量ξ
1
,ξ
2
必定线性相关。
解析
转载请注明原文地址:https://kaotiyun.com/show/7NV4777K
0
考研数学二
相关试题推荐
设siny+χey=0,当y=0时,求
设f(χ)为[-2,2]上连续的偶函数,且f(χ)>0,F(χ)=∫-22|χ-t|f(t)dt,求F(χ)在[-2,2]上的最小值点.
设A是三阶实对称矩阵,且A2+2A=O,r(A)=2.(1)求A的全部特征值;(2)当k为何值时,A+kE为正定矩阵?
确定常数a,b,c,使得=c.
设函数y=y(χ)满足微分方程y〞-3y′+2y=2eχ,且其图形在点(0,1)处的切线与曲线y=χ2-χ+1在该点的切线重合,求函数y=y(χ).
求微分方程的通解.
计算I=y2dσ,其中D由χ=-2,y=2,χ轴及曲线χ=-围成.
已知函数f(x)在区间[0,2]上可积,且满足则函数f(x)的解析式是
设总体X服从N(μ1,σ2),Y服从N(μ2,σ2),又X1,X2,…,Xn和Y1,Y2,…,Yn分别为取自总体X和Y的简单随机样本.求。
随机试题
在通用电气公司法中,多因素投资组合矩阵中的黄色地带应该采取的战略是()
二尖瓣狭窄患者的面容特征是()
A.呋塞米B.地高辛C.硝酸甘油D.扎莫特罗E.卡托普利通过利尿减少血容量从而治疗慢性心功能不全
“临事议制”
根据我国《突发公共卫生事件应急条例》规定,在某省发生重大食物中毒事件,省政府应当在接到报告()内,向国务院卫生行政主管部门报告。
():人类社会进入了后工业化的初期,经济结构中第三产业的比重开始超过第二产业,郊区的人口增长超过了城市的人口增长。
某公司2014年3月提前收到某建筑公司购货款项80万元。该公司提前收到的购货款属于()。
孔子云:“德之不厚,行之不远。”在当前社会转型期,存在很多为了一己私利践踏职业道德、社会公德等各种道德失范现象。因此,提倡“厚德”具有重要的意义和价值。这说明()。
对话框在关闭前,不能继续执行应用程序的其他部分,这种对话框称为()。
ChicagoPublicSchoolsofficialsaregivingthepublicanearlylookatthestrategytheywilluseinDecemberwhendecidingwhi
最新回复
(
0
)