首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α1,α2,…αn—1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…αn—1均正交的n维非零列向量。证明: ξ1,ξ2线性相关;
设向量α1,α2,…αn—1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…αn—1均正交的n维非零列向量。证明: ξ1,ξ2线性相关;
admin
2019-05-11
47
问题
设向量α
1
,α
2
,…α
n—1
是n—1个线性无关的n维列向量,ξ
1
,ξ
2
是与α
1
,α
2
,…α
n—1
均正交的n维非零列向量。证明:
ξ
1
,ξ
2
线性相关;
选项
答案
令A=(α
1
,α
1
,…,α
n—1
)
T
,则A是(n一1)×n矩阵,且r(A)=n一1。由已知条件可知 α
i
T
ξ
j
=0(i=1,2,…,n一1;j=1,2), 即 Aξ
j
=0(j=1,2), 这说明ξ
1
,ξ
2
是齐次线性方程组Ax=0的两个解向量。但Ax=0的基础解系中所含向量的个数为n一r(A)=n一(n一1)=1,所以解向量ξ
1
,ξ
2
必定线性相关。
解析
转载请注明原文地址:https://kaotiyun.com/show/7NV4777K
0
考研数学二
相关试题推荐
设A是三阶矩阵,其特征值是1,2,3,若A与B相似,求|B*+E|.
设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.
设A=,求A的特征值,并证明A不可以对角化.
设y=eχ为微分方程χy′+P(χ)y=χ的解,求此微分方程满足初始条件y(ln2)=0的特解.
设非齐次线性方程组Ax=β的通解为x=k1(1,0,0,1)T+k2(2,1,0,1)T+(1,0,1,2)T,其中k1,k2为任意常数,A=(α1,α2,α3,α4),则()
求极限:(a,b,c为正的常数).
设矩阵A=,行列式|A|=一1,又A*的属于特征值λ0的一个特征向量为α=(一1,一1,1)T,求a,b,c及λ0的值。
微分方程y"-λ2y=eλx+e-λx(λ>0)的特解形式为()
设f(x)是连续函数.求初值问题的解,其中a>0;
已知方程y"+=0的两个解y1=ex,y2=x,则该方程满足初值y(0)=1,y’(0)=2的解y=________.
随机试题
下列哪项检验不适用x2检验
( )不按照委托监理合同的约定履行监理义务,对应当监理的项目不检查或不按规定检查,给建设单位造成损失的,应当承担相应的赔偿责任。
工程内容验收包括()。
3.浓蜂王浆
证券投资基金的基金规模越大,风险越小,管理费用就()。
阅读以下文字,回答下列问题。2013年诺贝尔文学奖授予加拿大女作家爱丽丝·门罗。爱丽丝·门罗出生于加拿大安大略省的温格姆镇。父亲酷爱写作,母亲身为教师。生活在这样的书香门第,少女时代的门罗就萌生了成为小说家的梦想。19岁那年,门罗还在安大略大学攻读新闻
2014年5月28日晚上9点多,招远一名女子在麦当劳餐厅被6人殴打致死。期间,有多名顾客看见,却没有前去救援,似乎视而不见。在社会心理学中,这种现象被称为()
国家垄断资本主义是国家政权和私人垄断资本融合在一起的垄断资本主义。国家垄断资本主义是科技进步和社会化程度进一步提高的产物。关于国家资本主义的产生,下列说法中正确的是()
结合材料,回答问题:材料1我们主张,在国际关系中弘扬平等互信、包容互鉴、合作共赢的精神,共同维护国际公平正义。合作共赢,就是要倡导人类命运共同体意识,在追求本国利益时兼顾他国合理关切,在谋求本国发展中促进各国共同发展,建立更加
在关系模式X(R,S,T)中,如果R→S和R→T成立,则R→ST也成立,这条规则称为(169)。
最新回复
(
0
)