首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性微分方程y”+p(x)y’+q(x)y一f(xT) ①的3个解,且 则式①的通解为________.
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性微分方程y”+p(x)y’+q(x)y一f(xT) ①的3个解,且 则式①的通解为________.
admin
2021-08-05
41
问题
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y
1
(x),y
2
(x)与y
3
(x)是二阶非齐次线性微分方程y”+p(x)y’+q(x)y一f(xT) ①的3个解,且
则式①的通解为________.
选项
答案
y=C
1
(y
1
—y
2
)+C
2
(y
2
一y
3
)+y
1
,其中C
1
,C
2
为任意常数
解析
由非齐次线性微分方程的两个解,可构造出对应的齐次方程的解,再证明这样所得到的解线性无关即可.
y
1
一y
2
与y
2
一y
3
均是式①对应的齐次线性方程
y”+p(x)y’+q(x)y=0 ②
的两个解.今证它们线性无关.事实上,若它们线性相关,则存在不全为零的常数k
1
与k
2
使
k
1
(y
1
—y
2
)+k
2
(y
2
一y
3
)=0. ③
设k
1
≠0,又由题设知y
2
一y
3
≠0,于是式③可改写为
=常数,矛盾.
若k
1
=0,由y
2
一y
3
≠0,故由式③推知k
2
=0矛盾.这些矛盾证得y
1
一y
2
与y
2
一y
3
线性无关.于是
Y=C
1
(y
1
一y
2
)+C
2
(y
2
一y
3
)
为式②的通解,其中C
1
,C
2
为任意常数,从而知
y=C
1
(y
1
—y
2
)+C
2
(y
2
一y
3
)+y
1
为式①的通解.
转载请注明原文地址:https://kaotiyun.com/show/7Py4777K
0
考研数学二
相关试题推荐
设α1,α2,α3,β1,β2都是四维向量,且|A|=|α1,α2,α3,β1|=m,|B|=|α1,α2,β2,α3|=n,则|α3,α2,α1,β1+β2为().
方程y’sinx=ylny满足条件=e的特解是
设则()
设f(x)对一切x1,x2满足f(x1+x2)=f(x1)+f(x2),并且f(x)在x=0处连续,证明:函数f(x)在任意点x0处连续.
证明=anxn+an—1xn—1+…+a1x+a0。
设平面区域D:(x一2)2+(y一1)2≤1,若比较的大小,则有()
设函数f(x)在x=a的某邻域内有定义,则f(x)在x=a处可导的一个充分条件是()
极限
将曲线y=1-x2(0≤x≤1)和x轴与y轴所围的区域用曲线y=ax2分为面积相等的两部分,其中a是大于零的常数,求a的值.
设f(x)=∫0xarctan(t一x)2dt,g(x)=∫0sinx(3t2+t3cost)dt,当x→0时,f(x)是g(x)的()
随机试题
下列关于起重吊装作业,正确的做法有()。
在低压带电导线未采取()时,工作人员不得穿越。
在行政功能文化方面,主要有两种有代表性的文化观念_________、_________。
巴比妥类药物可与Cu盐吡啶试剂生成绿色配合物,又与Pb盐生成白色沉淀的是
下列不属于运动神经的是
水轮机按水流能量的转换特征分为()。
把若干相邻学科内容加以筛选、充实后按照新的体系合而为一的课程形态叫()。
铁道部门为了组织“爱路、护路”活动,要组建村民自助会,拟在其中选出三人当队长。由你负责此次活动。请问你怎么组织?
AmericanSignLanguage(ASL)usersarenostrangerstovideochatting.Thetechnologyletsdeafandhard-of-hearingpeoplesig
A、Itisconnectedwithpovertyandhunger.B、Itiswellknownforthepoeticbeauty.C、Ithasagreatreputationforitsgreatp
最新回复
(
0
)