首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性微分方程y”+p(x)y’+q(x)y一f(xT) ①的3个解,且 则式①的通解为________.
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性微分方程y”+p(x)y’+q(x)y一f(xT) ①的3个解,且 则式①的通解为________.
admin
2021-08-05
92
问题
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y
1
(x),y
2
(x)与y
3
(x)是二阶非齐次线性微分方程y”+p(x)y’+q(x)y一f(xT) ①的3个解,且
则式①的通解为________.
选项
答案
y=C
1
(y
1
—y
2
)+C
2
(y
2
一y
3
)+y
1
,其中C
1
,C
2
为任意常数
解析
由非齐次线性微分方程的两个解,可构造出对应的齐次方程的解,再证明这样所得到的解线性无关即可.
y
1
一y
2
与y
2
一y
3
均是式①对应的齐次线性方程
y”+p(x)y’+q(x)y=0 ②
的两个解.今证它们线性无关.事实上,若它们线性相关,则存在不全为零的常数k
1
与k
2
使
k
1
(y
1
—y
2
)+k
2
(y
2
一y
3
)=0. ③
设k
1
≠0,又由题设知y
2
一y
3
≠0,于是式③可改写为
=常数,矛盾.
若k
1
=0,由y
2
一y
3
≠0,故由式③推知k
2
=0矛盾.这些矛盾证得y
1
一y
2
与y
2
一y
3
线性无关.于是
Y=C
1
(y
1
一y
2
)+C
2
(y
2
一y
3
)
为式②的通解,其中C
1
,C
2
为任意常数,从而知
y=C
1
(y
1
—y
2
)+C
2
(y
2
一y
3
)+y
1
为式①的通解.
转载请注明原文地址:https://kaotiyun.com/show/7Py4777K
0
考研数学二
相关试题推荐
设y=f(lnx)ef(x),其中f可微,求
二次型f(x1,x2,x3)=x12+5x22+x32一4x1x2+2x2x3的标准形可以是()
已知P为3阶非零矩阵,且满足PQ=O,则下面结论正确的是()
(Ⅰ)因f(χ,1)=χ2,故[*]又因f(2,y)=4+(y-1)arcsin[*],故[*](Ⅱ)按定义[*]类似可求[*]=0(或由χ,y的对称性得).
已知向量组α1=(1,0,2,3)T,α2=(1,1,3,5)T,α3=(1,一1,1+2,1)T,α4=(1,2,4,a+8)β=(1,1,6+3,5)T.问:(1)a,b为何值时,β不能由α1,α2,α3,α4线性表示;(2)a,b为何值时,β可由α1
设f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分必要条件是()
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是()
设函数f(x)连续,则在下列变上限积分定义的函数中,必为偶函数的是()
设是微分方程的解,则的表达式为()
随机试题
提示排卵已经发生的指标是
能提高外周血小板数目的是
A.脾B.骨髓C.胸腺D.肝E.中胚叶胚胎第6周后主要造血器官是
下列诸海中错误的是
重症肌无力患者出现反拗危象时的正确治疗原则是
价值工程力求以最低的( )来实现必要功能。
某企业准备平价发行三年期公司债券,每半年付息一次,票面年利率6%,面值1000元。以下关于该债券的说法中,正确的有()。
被誉为“山外青山湖外湖,黛峰簇簇洞泉布”的是山水相依、层次丰富的()。
质量数据从功能上可以分为两种类型。其中________可以分为计数型检测值和计量型检测值。
WhyisSarahworried?
最新回复
(
0
)