首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为(-∞,+∞)上的连续奇函数,且单调增加,F(x)=∫0x(2t-x)f(x-t)dt,则F(x)是
设f(x)为(-∞,+∞)上的连续奇函数,且单调增加,F(x)=∫0x(2t-x)f(x-t)dt,则F(x)是
admin
2019-08-12
67
问题
设f(x)为(-∞,+∞)上的连续奇函数,且单调增加,F(x)=∫
0
x
(2t-x)f(x-t)dt,则F(x)是
选项
A、单调增加的奇函数.
B、单调增加的偶函数.
C、单调减小的奇函数.
D、单调减小的偶函数.
答案
C
解析
对被积函数作变量替换u=x-t,就有
F(x)=∫
0
x
(2t-x)f(x-t)dt=∫
0
x
(x-2u)f(u)du=x∫
0
x
f(u)du-2∫
0
x
uf(u)du.
由于f(x)为奇函数,故∫
0
x
f(u)du为偶函数,于是x∫
0
x
f(u)du为奇函数,又因uf(u)为偶函数,从而
∫
0
x
uf(u)du为奇函数,所以F(x)为奇函数.又
F’(x)=∫
0
x
f(u)du+xf(x)-2xf(x)=∫
0
x
f(u)du-xf(x),
由积分中值定理知在0与x之间存在ξ使得∫
0
x
f(u)du=xf(ξ).从而F’(x)=x[f(ξ)-f(x)],无论x>0,还是x<0,由f(x)单调增加,都有F’(x)<0,从而应选C.
其实,由F’(x)=∫
0
x
f(u)du-xf(x)=∫
0
x
[f(u)-f(x)]du及f(x)单调增加也可得F’(x)<0.
转载请注明原文地址:https://kaotiyun.com/show/uqN4777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上二次可微,且f〞(x)<0,证明
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为求:f(x)的极值.
一电子仪器由两部分构成,以X和Y分别表示两部分部件的寿命(单位:千小时),已知X和Y的联合分布函数为F(x,y)=(1)问X和Y是否独立;(2)求两部件的寿命都超过100小时的概率α。
利用变换x=arctant将方程化为y关于t的方程,并求原方程的通解.
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a
An×n(α1,α2,…,αn),Bn×n=(α1+α2,α2+α3,…,αn+α1),当r(A)=n时,方程组BX=0是否有非零解?
设其中g(x)有二阶连续导数,且g(0)=1,g’(0)=一1,求f’(x),并讨论f’(x)在(一∞,+∞)内的连续性.
设α1,α2,…,αn是n个n维向量,且已知α1x1+α2x2+…+αnxn=0(*)只有零解.问方程组(α1+α2)x1+(α2+α3)x2+…+(αn-1+αn)xn-1+
设对任意的x,总有φ(x)≤f(x)≤g(x),且则()
∫2xlnxln(1+t)dt=()
随机试题
一侧坐骨神经在梨状肌下孔处受损,将出现
艾滋病病毒感染者是指
男,65岁。有慢性便秘多年。近半年来发现,站立时阴囊部位出现肿块,呈梨形,平卧时可还纳。体检发现外环扩大,嘱病人咳嗽指尖有冲击感,平卧回纳肿块后,手指压迫内环处,站立咳嗽,肿块不再出现,拟诊腹外疝,准备手术治疗。为避免术后疝的复发术前准备中最重要的是
在市场经济条件下,资源配置的基础是()。
定期检测、检验制度的内容应包括()。
Whatareyougoingtodoifyouareinaburninghouse?Howwillyouescape?Doyouknowhowtosaveyourself?Pleasereadthef
中央扶贫开发工作会议2011年11月29日上午在北京召开,胡锦涛提出了到2020年深入推进扶贫开发的总体目标,以下不属于总体目标的是()。
设z=z(x,y)是由=0所确定的二元函数,其中F连续可偏导,求.
Moststudents______totheSummerCampweregoodstudents.
WhenindustrybecamemoreimportantthanagricultureinthelifeofAmericanpeople,familiesbecamesmallerthaneverbefore.
最新回复
(
0
)