首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二阶常系数线性微分方程 y″+ay′+βy=γe2x 的一个特解为y=e2x+(1+x)ex.求此方程的通解.
设二阶常系数线性微分方程 y″+ay′+βy=γe2x 的一个特解为y=e2x+(1+x)ex.求此方程的通解.
admin
2016-11-03
36
问题
设二阶常系数线性微分方程
y″+ay′+βy=γe
2x
的一个特解为y=e
2x
+(1+x)e
x
.求此方程的通解.
选项
答案
由所给方程的非齐次项为γe
2x
及特解中含有e
2x
项知,y
*
=e
2x
是原方程的一个特解.于是y=(1+x)e
x
应是对应齐次方程的特解,因而1为特征方程的二重特征根.于是2为特征方程的一特征根,特征方程为 r
2
一2r+1=0, 则齐次方程应是 y″一2y′+y=0, 故 α=-2, β=1. 又y
*
为非齐次方程的特解,代入其中得 4e
2x
一2.2e
2x
+e
2x
=γe
2x
, 故 γ=1. 因y
1
=e
x
,y
2
=xe
x
都是y″一2y′+y=0的解,且 [*] 故其线性无关,所以Y=(c
1
+c
2
x)e
x
为y″一2y′+y=0的通解.又y
*
=e
2x
是非齐次方程的一个特解,故y=(c
1
+c
2
x)e
x
一e
2x
是非齐次方程的通解.
解析
先根据题设确定微分方程,再求通解.
转载请注明原文地址:https://kaotiyun.com/show/7Tu4777K
0
考研数学一
相关试题推荐
[*]
证明:f(x)=x3+px2+qx+r(p,q,r为常数)至少有一个零值点.
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时.证明丨A丨≠0.
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:若α,β线性相关,则秩r(A)
设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则
设二阶常系数微分方程y〞+αyˊ+βy=ye2x有一个特解为y=e2x+(1+x)ex,试确定α,β,γ和此方程的通解.
(2010年试题,19)设P为椭圆面S:x2+y2+z2一yz=1上的动点,若S在点P处的切平面与xOy平面垂直,求点P的轨迹C,并计算曲线积分其中∑是椭球面S位于曲线C上方的部分.
微分方程y"一3y’+2y=2ex满足的特解为_____.
设y=f(x)是区间[0,1]上的任一非负连续函数.(1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积.(2)又设f(x)在区间(0,1)内可导,且
随机试题
物价不变、货币购买力不变条件下的利率是()
Ihavebeenstudyinghereforfouryears,bynextsummerI_____.
填入下面,与上下文衔接最恰当的一项是去年夏天,我在杭州一所疗养院里休养。( )江岸后面是起伏的山峦和绵延不断的树林。
流行性脑脊髓膜炎败血症期患者皮肤瘀点的主要病理基础是
在两样本比较的秩和检验中,已知第1组的样本量为n1=10,秩和T1=136,第2组的样本量为n2=15,秩和T2=189,若双侧0.05的T界值范围为94~166,按α=0.05,作出的统计推断是
根据《营业税暂行条例》及其实施细则规定,下列各项中,不属于营业税征收范围的是()。
B公司年初投资资本5200万元,预计今后三年可取得息前税后营业利润400万元,最近三年每年发生净投资为200万元,加权资本成本为6%,若从预计第四年开始可以进入稳定期,经济利润每年以1%的速度递增,则企业价值为多少?
完善社会主义法治建设,要求公民应当具有的法治理念不包括()。
下面有关Applet的执行的说法不正确的是______。
73.5percentofmajorU.S.firmsreportthattheyrecordandreviewtheiremployees’communicationsandactivitiesonthejob.
最新回复
(
0
)