首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶方阵A的特征值λ1,λ2,λ3互不相同,α1,α2,α3依次为对应于λ1,λ2,λ3的特征向量,则向量组α1,A(α1+α2),A2(α1+α2+α3)线性无关的充分必要条件是λ1,λ2,λ3满足_______.
设3阶方阵A的特征值λ1,λ2,λ3互不相同,α1,α2,α3依次为对应于λ1,λ2,λ3的特征向量,则向量组α1,A(α1+α2),A2(α1+α2+α3)线性无关的充分必要条件是λ1,λ2,λ3满足_______.
admin
2018-07-27
117
问题
设3阶方阵A的特征值λ
1
,λ
2
,λ
3
互不相同,α
1
,α
2
,α
3
依次为对应于λ
1
,λ
2
,λ
3
的特征向量,则向量组α
1
,A(α
1
+α
2
),A
2
(α
1
+α
2
+α
3
)线性无关的充分必要条件是λ
1
,λ
2
,λ
3
满足_______.
选项
答案
λ
2
λ
3
≠0.
解析
设k
1
α
1
+k
2
A(α
1
+α
2
)+k
3
A
2
(α
1
+α
2
+α
3
)=0,由Aα
j
=λ
j
α
j
(j=1,2,3),得k
1
α
1
+k
2
(λ
1
α
1
+λ
2
α
2
)+k
3
(λ
1
2
α
1
+λ
2
2
α
2
+λ
3
2
α
3
)=0,即(k
1
+λ
1
k
2
+λ
1
2
k
3
)α
1
+(λ
2
k
2
+λ
2
2
k
3
)α
2
+(λ
3
2
k
3
)α
3
=0,因属于不同特征值的特征向量线性无关,得齐次线性方程组
故向量组α
1
,A(α
1
+α
2
),A
2
(α
1
+α
2
+α
3
)线性无关
方程组(*)只有零解
方程组(*)的系数行列式△=λ
2
λ
3
2
≠0,故所求条件为λ
2
λ
3
≠0.
转载请注明原文地址:https://kaotiyun.com/show/7XW4777K
0
考研数学三
相关试题推荐
求y’’+a2y=8cosbx的通解,其中a>0,b>0为常数.
求下列二阶常系数齐次线性微分方程的通解:(Ⅰ)2y’’+y’-y=0;(Ⅱ)y’’+8y’+16y=0;(Ⅲ)y’’-2y’+3y=0.
设总体X~E(λ),则来自总体X的简单随机样本X1,X2,…,Xn的联合概率密度f(x1,x2,…,xn)=________.
设αi=(ai1,ai2,…,ain)T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关,已知β=(b1,b2,…,bn)T是线性方程组的非零解向量.试判断向量组α1,α2,…,αr,β的线性相关性.
设z=f(x,y)是由方程x=y+φ(y)所确定的二次可微函数,求
向量组α1=(1,0,1,2)T,α2=(1,1,3,1)T,α3=(2,-1,a+1,5)T线性相关,则a=_______.
计算行列式的值:
设4阶矩阵满足关系式A(E-C-1B)TCT=E,求A.
已知a,b,c不全为零,证明方程组只有零解.
已知A,A-E都是n阶实对称正定矩阵,证明E-A-1是正定矩阵.
随机试题
支气管扩张合并咯血时治疗一般不主张应用
某患者右髋痛1个月,需进行髋关节摄影检查。有关髋关节前后位摄影,叙述正确的是
各地应依据《中华人民共和国大气污染防治法》的规定,积极创造条件,在两控区内推行排污许可证制度。要按照()的原则核定重点企业的二氧化硫排放总量,做到重点企业必须持证排污。
质量监理的依据包括( )方面。
工程质量监督管理的内容包括()。
国际多式联运经营人的责任期间就是门到门。()
ABC公司2017年的税后利润为420万元,所得税税率为25%,全年固定成本和利息费用总额共为2350万元,其中公司今年年初发行了一种债券,发行债券数量为1万张,债券年利息为当年利息总额的40%,发行价格为1050元,发行费用占发行价格的2%。预计下年
根据以下材料,回答下列问题。2009年,某省全年粮食作物播种面积253.85万公顷,比上年增长1.5%;糖蔗种植面积13.58万公顷,下降0.2%;油料种植面积33.14万公顷,增长2.3%;蔬菜种植面积113.84万公顷,增长2.3%。
下列“十三五”规划纲要中关于建立区域协调发展新格局的说法正确的是:
【2011年第51题】某公司总裁曾经说过:“当前总裁批评我时,我不喜欢那感觉,因此,我不会批评我的继任者。”以下哪项最可能是该总裁上述言论的假设?
最新回复
(
0
)