首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为反对称矩阵,则 (1)若k是A的特征值,-k一定也是A的特征值. (2)如果它的一个特征向量η的特征值不为0,则ηTη=0. (3)如果A为实反对称矩阵,则它的特征值或为0,或为纯虚数.
设A为反对称矩阵,则 (1)若k是A的特征值,-k一定也是A的特征值. (2)如果它的一个特征向量η的特征值不为0,则ηTη=0. (3)如果A为实反对称矩阵,则它的特征值或为0,或为纯虚数.
admin
2018-06-27
48
问题
设A为反对称矩阵,则
(1)若k是A的特征值,-k一定也是A的特征值.
(2)如果它的一个特征向量η的特征值不为0,则η
T
η=0.
(3)如果A为实反对称矩阵,则它的特征值或为0,或为纯虚数.
选项
答案
(1)若k是A的特征值,则k也是A
T
的特征值.而A
T
=-A,于是-k是A的特征值. (2)设η的特征值为λ,则Aη=λη. λη
T
η=η
T
Aη=(A
T
η)
T
η=(-Aη)
T
η=-λη
T
η. λ不为0,则η
T
η=0. (3)A为实反对称矩阵,则由上例知道,-A
2
=A
T
A的特征值都是非负实数,从而A
2
的特征值都是非正实数.设λ是A的特征值,则λ
2
是λ
2
的特征值,因此λ
2
≤0,于是λ为0,或为纯虚数.
解析
转载请注明原文地址:https://kaotiyun.com/show/7Yk4777K
0
考研数学二
相关试题推荐
试证明n维列向量组α1,α2,…αn线性无关的充分必要条件是
对于线性方程组讨论λ为何值时,方程组无解、有唯一解和有无穷多组解.在方程组有无穷多组解时,试用其导出组的基础解系表示全部解.
a=一5是齐次方程组有非零解的
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.求矩阵A的特征值;
设u=f(2x+3y,z),其中f具有二阶连续偏导数,而z=z(x,y)是由方程=1确定并满足z(0,0)=1的函数,求结果用fi’(0,1),fij’’(0,1)表示(i,j=1,2)
设曲线L的参数方程为x=φ(t)=t一sint,y=ψ(t)=1一cost(0≤t≤2π)设曲线L的形心为(),求
设A3×3=[α1,α2,α3],方程组Ax=β有通解kξ+η=kE1,2,一3]T+[2,一1,1]T,其中k是任意常数.证明:方程组[α1+α2+α3+β,α1,α2,α3]x=β有无穷多解,并求其通解.
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型.
按第一行展开[*]得到递推公式D5一D4=-x(D4-D3)一…=-x3(D2-D1).由于[*]=1一x+x2,D1=1一x,于是得[*]容易推出D5=一x5+x4一x2+D2=一x5+x4一x3+x2一x+1.
设f(x)连续并满足f(t)=cos2t+∫0tsinsds,求f(t)。
随机试题
在旅游过程中,导游人员应始终保持清醒头脑,处事沉着、冷静、有条不紊。()
患者宫颈活检为CINⅢ累及腺体,进一步应行
A.经胃肠道吸收B.经呼吸道吸收C.经皮肤吸收D.经乳汁吸收E.经腹腔注射
根据相关法律规定,行政机关将要作出()行政处罚决定的,经当事人提出听证要求,由行政机关组织听证。
用人单位依据劳动法的规定裁减人员,在( )内录用人员的,应当优先录用被裁减的人员。
在国境口岸发现检疫传染病、疑似检疫传染病,或者有人非因意外伤害而死亡并死因不明的,国境口岸有关单位和交通工具的负责人,应当立即向( )报告,并申请临时检疫。
寡头厂商如何阻止别的厂商进入行业?(2016年南京大学919经济学)
已知a0=3,a1=5,对任意的n>1,有证明:当|x|<1时,幂级数收敛,并求其和函数S(x).
在考生文件夹下,打开文档WORD.DOCX,按照要求完成下列操作并以该文件名(WORD.DOCX)保存文档。将标题段文字(“某大学智慧校同实践”)设置为小三号、黑体、加粗、居中;标题段文本的阴影效果设置为“预设/外部,右下斜偏移”、“颜色/红色(标准色
HowmanykindsofdoctorsarethereintheUS?Whatkindofdiseasedospecialiststreat?Specialhealthproblems,suchasa__
最新回复
(
0
)