首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为反对称矩阵,则 (1)若k是A的特征值,-k一定也是A的特征值. (2)如果它的一个特征向量η的特征值不为0,则ηTη=0. (3)如果A为实反对称矩阵,则它的特征值或为0,或为纯虚数.
设A为反对称矩阵,则 (1)若k是A的特征值,-k一定也是A的特征值. (2)如果它的一个特征向量η的特征值不为0,则ηTη=0. (3)如果A为实反对称矩阵,则它的特征值或为0,或为纯虚数.
admin
2018-06-27
89
问题
设A为反对称矩阵,则
(1)若k是A的特征值,-k一定也是A的特征值.
(2)如果它的一个特征向量η的特征值不为0,则η
T
η=0.
(3)如果A为实反对称矩阵,则它的特征值或为0,或为纯虚数.
选项
答案
(1)若k是A的特征值,则k也是A
T
的特征值.而A
T
=-A,于是-k是A的特征值. (2)设η的特征值为λ,则Aη=λη. λη
T
η=η
T
Aη=(A
T
η)
T
η=(-Aη)
T
η=-λη
T
η. λ不为0,则η
T
η=0. (3)A为实反对称矩阵,则由上例知道,-A
2
=A
T
A的特征值都是非负实数,从而A
2
的特征值都是非正实数.设λ是A的特征值,则λ
2
是λ
2
的特征值,因此λ
2
≤0,于是λ为0,或为纯虚数.
解析
转载请注明原文地址:https://kaotiyun.com/show/7Yk4777K
0
考研数学二
相关试题推荐
设n阶矩阵,则|A|_______。
设矩阵,问当k为何值时,存在可逆矩阵P,使得P-1AP为对角矩阵?并求出P和相应的对角矩阵.
若函数f(x)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f’’(x)
若函数f(x)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f’’(x)
设f(x)在(一∞,+∞)内一阶可导,求证:若f(x)在(一∞,+∞)内二阶可导,又存在极限,则存在ξ∈(一∞,+∞),使得f’’(ξ)=0.
设u=f(2x+3y,z),其中f具有二阶连续偏导数,而z=z(x,y)是由方程=1确定并满足z(0,0)=1的函数,求结果用fi’(0,1),fij’’(0,1)表示(i,j=1,2)
设二次型xTAx=x12+4x22+x32+2ax1x2+2bx1x3+2cx2x3,矩阵A满足AB=0,其中用正交变换化二次型xTAx为标准形,并写出所用正交变换;
设A3×3=[α1,α2,α3],方程组Ax=β有通解kξ+η=kE1,2,一3]T+[2,一1,1]T,其中k是任意常数.证明:方程组[α1+α2+α3+β,α1,α2,α3]x=β有无穷多解,并求其通解.
按第一行展开[*]得到递推公式D5一D4=-x(D4-D3)一…=-x3(D2-D1).由于[*]=1一x+x2,D1=1一x,于是得[*]容易推出D5=一x5+x4一x2+D2=一x5+x4一x3+x2一x+1.
用泰勒公式确定下列无穷小量当χ→0时关于χ的无穷小阶数:(Ⅰ)(Ⅱ)∫0χ(et-1-t)2dt.
随机试题
在时分多路复用通信系统中,每一路所占有的时间间隔称为()。
Heisalreadyinthebathsodonot______himtoanswerthephone.
某项目有4个方案,甲方案财务净现值FNPV=200万元,投资现值Ip=3000万元,乙方案FNPV=180万元,Ip=2000万元;丙方案FNPV=150万元,Ip=3000万元;丁方案FNPV=200万元,Ip=2000万元,据此条件,项目的最好方案是
在Windows98下要激活一个快捷菜单的方法是()。
健康保险中都规定有免赔款条款,其中,全年免配额扣除的对象是()。
在其他因素不变的条件下,如果一国政府在社会保障政策上降低保障标准,则其财政支出占国内生产总值的比重的变化情况是()。
A公司是一家上市公司,业务量增长迅速,预计每年销售收入增长80%~120%。A公司决定通过新建厂房来提高生产能力,为此需要筹措资金6亿元,其中5000万元可以通过公司自有资金解决,剩余的5.5亿元需要从外部筹资。A公司有关财务数据如下:(1)资产总额为3
()对于家具相当于花岗岩对于()
在某应用软件的安装说明书中指出,该应用软件的运行环境为Windows98 SE。这里的SE是指【 】。
ManyAmericans-perhapsmostofthem-aren’treadyforPresidentBush’s"ownershipsociety".Theideasoundsgood.Employeescould
最新回复
(
0
)