首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为反对称矩阵,则 (1)若k是A的特征值,-k一定也是A的特征值. (2)如果它的一个特征向量η的特征值不为0,则ηTη=0. (3)如果A为实反对称矩阵,则它的特征值或为0,或为纯虚数.
设A为反对称矩阵,则 (1)若k是A的特征值,-k一定也是A的特征值. (2)如果它的一个特征向量η的特征值不为0,则ηTη=0. (3)如果A为实反对称矩阵,则它的特征值或为0,或为纯虚数.
admin
2018-06-27
90
问题
设A为反对称矩阵,则
(1)若k是A的特征值,-k一定也是A的特征值.
(2)如果它的一个特征向量η的特征值不为0,则η
T
η=0.
(3)如果A为实反对称矩阵,则它的特征值或为0,或为纯虚数.
选项
答案
(1)若k是A的特征值,则k也是A
T
的特征值.而A
T
=-A,于是-k是A的特征值. (2)设η的特征值为λ,则Aη=λη. λη
T
η=η
T
Aη=(A
T
η)
T
η=(-Aη)
T
η=-λη
T
η. λ不为0,则η
T
η=0. (3)A为实反对称矩阵,则由上例知道,-A
2
=A
T
A的特征值都是非负实数,从而A
2
的特征值都是非正实数.设λ是A的特征值,则λ
2
是λ
2
的特征值,因此λ
2
≤0,于是λ为0,或为纯虚数.
解析
转载请注明原文地址:https://kaotiyun.com/show/7Yk4777K
0
考研数学二
相关试题推荐
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b—2,a+2b)T,β=(1,3,-3)T,试讨论当a、b为何值时,(1)β不能由α1,α2,α3线性表示;(2)β可由α1,α2,α3唯一地线性表示,并求出表示式;
设f(x)在[0,1]上具有二阶导数.且满足条件|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点,证明:.
设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b).证明:在(a,b)内至少存在一点ξ,使得f’(ξ)>0.
设函数f(f)在[0,+∞)上连续,且满足方程,求f(t).
a=一5是齐次方程组有非零解的
设xOy平面第一象限中有曲线F:y=y(x),过点y’(x)>0.M(x,y)为F上任意一点,满足:弧段的长度与点M处厂的切线在x轴上的截距之差为求曲线F的表达式.
曲线在其交点处的切线的夹角θ=_________.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求α1,α2,α3,α4应满足的条件;
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求齐次方程组(i)的解;
用泰勒公式求下列极限:
随机试题
在Excel2010中,B5、C5单元格的数据分别为10、20,拖动鼠标选中B5:C5区域并选单击“合并后居中”按钮,在弹出的对话框中再单击“确定”按钮,则单元格内容为()
患者,女,32岁,因甲型肝炎收入院治疗,应采取的隔离是
某银行以某公司未偿还贷款为由向法院起诉,法院终审判决认定其请求已过诉讼时效,予以驳回。某银行向某县政府发函,要求某县政府落实某公司的还款责任。某县政府复函:“请贵行继续依法主张债权,我们将配合做好有关工作。”而后,某银行向法院起诉,请求某县政府履行职责。法
在项目竣工验收和总结评价阶段,咨询工程师的主要工作不包括()。
A公司中标承建某排水工程,主要包括:高位井(兼顶管工作井)一座;内径∮1.6m,全长1856m钢筋混凝土顶管一条;采用垂直顶升法施工的外径∮0.48m垂直排放管14根。本顶管的顶距较长,且管径较小,因此施工组织设计应针对超长距离顶进的工程特点,把顶管
2008年,工商管理专业毕业的大学生张某选择了自主创业的方式就业,在亲属的资金支持下创办了一家小型企业。该企业的业务是为汽车厂加工螺丝垫片。12名员工全部由其他企业的下岗人员组成。对于该企业的组织管理,大学生张某必须做出科学的决策。根据以上资料,回答下列
下列关于股份有限公司董事会的组成表述正确的是()。
()是统一战线组织又是民间商会。
用螺旋图形装在色轮上()
用于核对某些重要行为是否呈现的记录法是()。
最新回复
(
0
)