首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2009年] 袋中有一个红球、两个黑球、三个自球.现在有放回地从袋中取两次,每次取一个,以X,Y,Z分别表示两次取球所取得的红、黑与白球个数. 求P(X=1|Z=0);
[2009年] 袋中有一个红球、两个黑球、三个自球.现在有放回地从袋中取两次,每次取一个,以X,Y,Z分别表示两次取球所取得的红、黑与白球个数. 求P(X=1|Z=0);
admin
2019-05-11
84
问题
[2009年] 袋中有一个红球、两个黑球、三个自球.现在有放回地从袋中取两次,每次取一个,以X,Y,Z分别表示两次取球所取得的红、黑与白球个数.
求P(X=1|Z=0);
选项
答案
解一 P(Z=0)=P(两次取球都没有取到白球),该事件包括下述几种情况(考虑取球的次序):{X=1,Y=1}={第一次取到一红球,第二次取到一黑球}+{第一次取到一黑球,第二次取到一红球},共有C
1
1
C
2
1
+C
2
1
C
1
1
=4种取法; {X=2,Y=0}={第一次取到一红球,第二次取到一红球},共有C
1
1
C
1
1
=1种取法; {X=0,Y=2}={第一次取到一黑球,第二次取到一黑球},共有C
1
1
C
2
1
=4种取法. 由命题3.3.1.2知,两次取球有放回,每次取一个,取两次的样本空间Ω共含有n
m
=6
2
个样本点,故P(Z=0)=(C
1
1
C
2
1
+C
2
1
C
1
1
+C
1
1
C
1
21
+C
2
1
C
2
1
)/6
2
=9/36=1/4,又 P(X=1,Z=0)=P(X=1,Y=1)=(C
1
1
C
2
1
+C
2
1
C
1
1
)/6
2
=1/9. 故 P(X=1|Z=0)=P(X=1,Z=0)/P(Z=0)=(1/9)/(1/4)=4/9. 解二 P(X=1|Z=0)=P(在没有取到白球的情况下,取到一次红球),也可利用缩减样本空间法求得P(X=1|Z=0)=(C
1
1
C
2
1
+C
2
1
C
1
1
)/3
2
=4/9. 注:命题3.3.1.2 从n个不同元素中按照有放回且计序的要求从中取出m(m≤n)个,这时得到的样本空间设为Ω,则此样本空间Ω共含有n
m
个样本点,即从n个不同元素中取m个的允许重复的排列的种数为n
m
.
解析
转载请注明原文地址:https://kaotiyun.com/show/7bJ4777K
0
考研数学三
相关试题推荐
已知随机变量Y~N(μ,σ2),且方程x2+x+Y=0有实根的概率为,则未知参数μ=________。
设二维随机变量(X,Y)的概率密度为求:(Ⅰ)(X,Y)的边缘概率密度fX(x),fY(y);(Ⅱ)Z=2X—Y的概率密度fZ(z)。
设X服从[a,b]上的均匀分布,X1,…,Xn为简单随机样本,求a,b的最大似然估计量。
已知随机变量(X,Y)在区域D={(x,y)|一1<x<1,一1<y<1}上服从均匀分布,则()
设随机变量X的概率密度为令Y=X2,F(x,y)为二维随机变量(X,Y)的分布函数。(Ⅰ)求Y的概率密度fY(y);
求幂级数.
设f(x,y)在区域D:x2+y2≤t2上连续且f(0,0)一4,则=______.
高度为h(t)(t为时间)的雪堆在融化过程中,其侧面满足z=h(t)-,已知体积减少的速度与侧面积所成比例系数为0.9,问高度为130的雪堆全部融化需要多少时间(其中长度单位是cm,时间单位为h)?
设f(x)∈C[0,1],f(x)>0.证明积分不等式:ln∫01f(x)dx≥∫01lnf(x)dx.
由定积分的奇偶性得[*]
随机试题
采用凸轮移距法是使分度头作变速旋转运动,工作台也相应作变速进给运动,从而铣削出等螺旋角锥度刀具。()
下列四组数依次为二进制、八进制和十六进制,符合要求的是________。
Nickwastiredoflife.Everydaywasexactlythesame."WhatIneedisalittleadventure!"Nickthoughtashewaitedatth
男性患者,21岁,近2个月来咳嗽,痰中带血丝,午后手心足底发热、盗汗、心悸,X线胸片:右上肺大片状阴影,密度不均,其内可见一薄壁空洞,最可能的诊断是
预后最差的肺癌类型是
A.《药品生产许可证》B.《药品经营许可证》C.《医疗机构制剂许可证》D.《医疗机构执业许可证》E.《进口准许证》麻醉药品和国家规定范围内的精神药品进口必须持有相应的()。
隧道防排水技术主要是以排为主,以防为辅。()
轴环的用途是()。
国库单一账户体系的银行账户包括()。
TheoriesofHistoryI.Howmuchweknowabouthistory?A.Writtenrecordsexistforonlyafractionofman’stimeB.Theaccurac
最新回复
(
0
)