首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αM,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设α1,α2,…,αM,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
admin
2018-05-23
67
问题
设α
1
,α
2
,…,α
M
,β
1
,β
2
,…,β
n
线性无关,而向量组α
1
,α
2
,…,α
m
,γ线性相关.证明:向量γ可由向量组α
1
,α
2
,…,α
m
,β
1
,β
2
,…,β
n
线性表示.
选项
答案
因为向量组α
1
,α
2
,…,α
m
,β
1
,β
2
,…,β
n
线性无关,所以向量组α
1
,α
2
,…,α
m
也线性无关,又向量组α
1
,α
2
,…,α
m
,γ线性相关,所以向量γ可由向量组α
1
,α
2
,…,α
m
线性表示,从而γ可由向量组α
1
,α
2
,…,α
m
,β
1
,β
2
,…,β
n
线性表示.
解析
转载请注明原文地址:https://kaotiyun.com/show/7bg4777K
0
考研数学一
相关试题推荐
计算
(Ⅰ)设随机变量X服从指数分布e(λ),证明:对任意非负实数s及t,有P(X≥s+t|x≥s)=P(X≥t).这个性质叫做指数分布的无记忆性.(Ⅱ)设电视机的使用年数X服从指数分布e(0.1),某人买了一台旧电视机,求还能使用5年以上的概率.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=.(1)记x=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型
设函数f(u)有连续的一阶导数,f(0)=2,且函数满足求z的表达式.
设有向曲面S:z=x2+y2,x≥0,y≥0,z≤1,法向量与z轴正向夹角为钝角.求第二型曲面积分
已知三元二次型χTAχ的秩为2,且求此二次型的表达式,并求正交变换χ=Qy化二次型为标准形.
(Ⅰ)已知由参数方程确定了可导函数y=f(χ),求证:χ=0是y=f(χ)的极大值点.(Ⅱ)设F(χ,y)在(χ0,y0)某邻域有连续的二阶偏导数,且F(χ0,y0)=F′χ(χ0,y0)=0,F′y(χ0,y0)>0,F〞χχ(χ0,y0)<0
袋中装有5个白球,3个红球,第一次从袋中任取一球,取后不放回,第二次从袋中任取2球,用Xi表示第i次取到的白球数,i=1,2.(Ⅰ)求(X1,X2)的联合分布;(Ⅰ)求P{X1=0,X2≠0},P{X1X2=0};(Ⅲ)判断X
设u=u(x,y)由方程组u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0确定,其中f,g,h连续可偏导且.
设函数μ(x,y),ν(x,y)在D:x2+y2≤1上一阶连续可偏导,又f(x,y)=ν(x,y)i+μ(x,y)j,g(x,y)=,且在区域D的边界上有μ(x,y)≡1,ν(x,y)≡y,求f.gdσ.
随机试题
进入药店,刚开始可以闻到很浓的药味,过一会儿就闻不到了,这是感觉的()
《郑伯克段于鄢》记叙了春秋末期发生在郑国王室内部的一场斗争。()
某患儿精神呆滞,智力迟钝,面色苍白,四肢关节柔软,手不能握举,足不能行步。治疗方法为
保护易感人群最重要的主动免疫措施是
孔祥瑞是天津港煤码头公司操作一队队长,只有初中文凭的他在港口工作的30多年里,通过勤奋学习,不断钻研,把精力倾注在技术改革和创新上,在工作岗位上取得科研成果150余项,为企业创造经济效益8400万元,是新时期产业工人的先进典型,孔祥瑞的成功信条是:“可以没
领导脾气不好,老是批评你,你怎么办?
泥土:煅烧:陶瓷
Justasthebuilderisskilledinthehandlingofhisbricks,______istheexperiencedwriterinthehandlingofhiswords.
Welisteneddumb-struck,fullof______,totheshockingdetailsofthecorruptionoftheexpresidentofthecompany.
A、Australia.B、Maharashtra.C、France.D、Austria.A
最新回复
(
0
)