首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知列向量组α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β2=α3+tα4,β4=α4+tα1,讨论t满足什么条件时,β1,β2,β3,β4也是方程组Ax=0的一个基础解系.
已知列向量组α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β2=α3+tα4,β4=α4+tα1,讨论t满足什么条件时,β1,β2,β3,β4也是方程组Ax=0的一个基础解系.
admin
2021-07-27
58
问题
已知列向量组α
1
,α
2
,α
3
,α
4
是线性方程组Ax=0的一个基础解系,若β
1
=α
1
+tα
2
,β
2
=α
2
+tα
3
,β
2
=α
3
+tα
4
,β
4
=α
4
+tα
1
,讨论t满足什么条件时,β
1
,β
2
,β
3
,β
4
也是方程组Ax=0的一个基础解系.
选项
答案
由线性相关性的定义式入手,设存在一组常数k
1
,k
2
,k
3
,k
4
,使得k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
α
4
=0,将β
1
=α
1
+tα
2
,β
2
=α
2
+tα
3
,β
3
==α
3
+tα
4
,β
4
=α
4
+tα
1
代入得(k
1
+tk
4
)α
1
+(k
2
+tk
1
)α
2
+(k
3
+tk
2
)α
3
+(k
4
+tk
3
)α
4
=0,由于α
1
,α
2
,α
3
,α
4
线性无关,从而有[*]方程组仅有零解。当且仅当[*],即t≠±1时,β
1
,β
2
,β
3
,β
4
是方程组的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/7hy4777K
0
考研数学二
相关试题推荐
设A为m×n矩阵,B为n×m矩阵,若AB=E,则()
设f(x)=x2(x一1)(x一2),则f’(x)的零点个数为()
设A为m×n矩阵,B为n×m矩阵,且m>n,则必有()
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解.
设A,B为n阶实对称矩阵,则A与B合同的充分必要条件是().
设n(n≥3)阶矩阵若r(A)=n一1,则a必为
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是()
某五元齐次线性方程组的系数矩阵经初等变换,化为.则自由变量可取为(1)x4,x5.(2)x3,x5.(3)x1,x5.(4)x2,x3.那么正确的共有()
设矩阵B=,已知矩阵A相似于曰,则秩(A-2E)与秩(A-E)之和等于
随机试题
DangersAwaitBabieswithAltitudeWomenwholiveintheworld’shighestcommunitiestendtogivebirthtounderweightbabi
黄疸最具特征的表现是
氯化物检查要求的酸性条件为()
潘某去某地旅游,当地玉石资源丰富,且盛行“赌石”活动,买者购买原石后自行剖切,损益自负。潘某花5000元向某商家买了两块原石,切开后发现其中一块为极品玉石,市场估价上百万元。商家深觉不公,要求潘某退还该玉石或补交价款。对此,下列哪一选项是正确的?(
会计监督是会计的基本职能之一,是我国经济监督体系的重要组成部分。以下关于会计监督的正确说法是()。
下列关于会计职业道德的表述中,正确的有()。
某大学为治理校园“低头族”现象,倡议同学们课堂上不要使用手机,课后多读好书。请你为这个活动拟一条宣传标语。要求至少使用一种修辞手法,20个字以内。
拿大科学家在研究“威廉斯综合症”时意外地发现,有着音乐、数学天赋的人,他们的天赋其实是基因排列失常造成的,而且同样的基因失序也可能会导致精神分裂症等精神病。大多数一出生就患有“威廉斯综合症”的孩子,他们体内的7号染色体错排了20个基因。在全球每两万人当中,
二进制数110001转换成十进制数是_______。
GiantStructuresItisanimpossibletasktoselectthemostamazingwondersofthemodernworldsinceeveryyearmore【C1】__
最新回复
(
0
)