首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性方程 yˊˊ+p(x)yˊ+q(x)y=f(x) ① 的3个解,且 ≠常数, 则式①的通解为________.
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性方程 yˊˊ+p(x)yˊ+q(x)y=f(x) ① 的3个解,且 ≠常数, 则式①的通解为________.
admin
2019-03-12
69
问题
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y
1
(x),y
2
(x)与y
3
(x)是二阶非齐次线性方程
yˊˊ+p(x)yˊ+q(x)y=f(x) ①
的3个解,且
≠常数,
则式①的通解为________.
选项
答案
y=C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
)+y
1
,其中C
1
,C
2
为任意常数
解析
由非齐次线性方程的两个解,可构造出对应的齐次方程的解,再证明这样所得到的解线性无关便可.
y
1
-y
2
与y
2
-y
3
均是式①对应的线性齐次方程
yˊˊ+p(x)yˊ+q(x)y=0 ②
的两个解.今证它们线性无关.事实上,若它们线性相关,则存在两个不全为零的常数k
1
与k
2
使
k
1
(y
1
-y
2
)+k
2
(y
2
-y
3
)=0. ③
设k
1
≠0,又由题设知y
2
-y
3
≠0,于是式③可改写为
矛盾.若k
1
=0,由y
2
-y
3
≠0,故由式③推知k
2
=0矛盾.这些矛盾证得y
1
-y
2
与y
2
-y
3
线性无关.
于是
y=C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
) ④
为式②的通解,其中C
1
,C
2
为任意常数,从而知
y=C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
)+y
1
⑤
为式①的通解.
转载请注明原文地址:https://kaotiyun.com/show/7kP4777K
0
考研数学三
相关试题推荐
设A是n×m矩阵,B是m×n矩阵,其中n
设α1=(2,1,2,3)T,α2=(一1,1,5,3)T,α3=(0,一1,一4,一3)T,α4=(1,0,一2,一1)T,α5=(1,2,9,8)T.求r(α1,α2,α3,α4,α5),找出一个最大无关组.
设α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b一2,a+2b)T,β=(1,3,一3)T.试讨论当a,b为何值时,(1)β不能用α1,α2,α3线性表示;(2)β能用α1,α2,α3唯一地线性表示,求表示式;(3)β能用
计算行列式
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为①求A.②证明A+E是正定矩阵.
设由方程φ(bz—cy,cx一az,ay—bx)=0(*)确定隐函数z=z(x,y),其中φ对所有变量有连续偏导数,a,b,c为非零常数,且bφ’1一aφ2≠0,求.
求下列各函数的偏导数与全微分:
已知总体X是离散型随机变量,X可能取值为0,1,2,且P{X=2}=(1—θ)2,EX=2(1—θ)(θ为未知参数).试求X的概率分布;
设A,B为相互独立的随机事件,0<P(A)=P<1,且A发生B不发生与B发生A不发生的概率相等,记随机变量试求X与Y的相关系数ρ.
设则().
随机试题
动脉血氧分压(PaO2)低于(1)_________,或伴有二氧化碳分压(PaCO2)高于(2)_________。即为呼吸衰竭。
A.波状热B.稽留热C.不规则热D.弛张热E.间歇热常见于登革热的热型为
肺实变时触诊可出现
5岁患儿突发寒战高热,左大腿下端深压痛,患肢不敢活动,白细胞总数升高。确诊后须立即采取的治疗方法是
沙丁胺醇作用特点
下列既属于流通环节的补贴,又属于实物补贴的是()。
亲社会行为泛指一切符合社会期望而对他人、群体或社会有益的行为,其特征表现为高社会赞许性、自利性、利他性和互惠性。亲社会行为不仅使个体能够获得来自社会的、他人的和自我的奖励,而且能够避免来自社会的、他人的和自我的惩罚。根据上述定义,下列不属于亲社会行为的是
简述第三世界国家就建立国际经济新秩序所做的努力。(苏州大学2013年世界史专业基础综合真题)
ManyAmericansregardthejurysystemasaconcreteexpressionofcrucialdemocraticvalues,includingtheprinciplesthatallc
与……联系
最新回复
(
0
)