首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性方程 yˊˊ+p(x)yˊ+q(x)y=f(x) ① 的3个解,且 ≠常数, 则式①的通解为________.
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性方程 yˊˊ+p(x)yˊ+q(x)y=f(x) ① 的3个解,且 ≠常数, 则式①的通解为________.
admin
2019-03-12
45
问题
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y
1
(x),y
2
(x)与y
3
(x)是二阶非齐次线性方程
yˊˊ+p(x)yˊ+q(x)y=f(x) ①
的3个解,且
≠常数,
则式①的通解为________.
选项
答案
y=C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
)+y
1
,其中C
1
,C
2
为任意常数
解析
由非齐次线性方程的两个解,可构造出对应的齐次方程的解,再证明这样所得到的解线性无关便可.
y
1
-y
2
与y
2
-y
3
均是式①对应的线性齐次方程
yˊˊ+p(x)yˊ+q(x)y=0 ②
的两个解.今证它们线性无关.事实上,若它们线性相关,则存在两个不全为零的常数k
1
与k
2
使
k
1
(y
1
-y
2
)+k
2
(y
2
-y
3
)=0. ③
设k
1
≠0,又由题设知y
2
-y
3
≠0,于是式③可改写为
矛盾.若k
1
=0,由y
2
-y
3
≠0,故由式③推知k
2
=0矛盾.这些矛盾证得y
1
-y
2
与y
2
-y
3
线性无关.
于是
y=C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
) ④
为式②的通解,其中C
1
,C
2
为任意常数,从而知
y=C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
)+y
1
⑤
为式①的通解.
转载请注明原文地址:https://kaotiyun.com/show/7kP4777K
0
考研数学三
相关试题推荐
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.(Ⅰ)求矩阵A的特征值;(Ⅱ)求可逆矩阵P使P-1AP=A.
随机变量X可能取的值为-1,0,1.且知EX=0.1,EX2=0.9,求X的分布列.
n维向量组(I)α1,α2,…,αr可以用n维向量组(Ⅱ)β1β2,…,βs线性表示.
已知α=(1,1,一1)T是的特征向量,求a,b和α的特征值λ.
证明
求下列幂级数的收敛域:
设D是位于曲线y=(a>1,0≤x<+∞)下方,x轴上方的无界区域.(Ⅰ)求区域D绕x轴旋转一周所成旋转体的体积V(a);(Ⅱ)当a为何值时,V(a)最小?并求此最小值.
假设随机变量X的密度函数f(x)=ce-λ|x|(λ>0,一∞<x<+∞),Y=|X|.问X与Y是否相关?为什么?
设n阶矩阵证明:行列式|A|=(n+1)an。
设则
随机试题
在Word编辑状态下,如要调整段落的左右边界,用()的方法最为直观、快捷。
患者男性,25岁,泌尿系统感染。链霉素敏感实验(—),注射链霉素后,病人感觉胸部憋闷,呼吸困难,心悸,发绀,出冷汗。诊断为链霉素过敏性休克。除上述的抢救药物外,尚应考虑的辅助药物是
财务限制条款是防止公司的财务状况出现恶化的限制条款,其内容包括()。
半年前以5000元购买某股票,一直持有至今尚未卖出,持有期曾获红利50元。预计未来半年内不会再发放红利,且未来半年后市值达到5900元的可能性为50%,市价达到6000元的可能性也是50%。那么预期收益率是多少?()
将公安队伍的组成人员分为警官、警员、专业技术人员、辅助人员四大类进行管理,是()的内容。
反映研究水平的重要标志之一是()
人民军队必须置于中国共产党的绝对领导之下的根本原则的确立是在()
嵌入式系统中的CPU具有一些与通用计算机所使用的CPU不同的特点,下面不是其特点的是()。
从局域网应用角度看,哪个观点是正确的?()
对长度为n的线性表进行顺序查找,在最坏情况下需要比较的次数为()。
最新回复
(
0
)