首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间(一∞,+∞)上连续且严格单调增加,又设则φ(x)在区间(一∞,+∞)上( )
设f(x)在区间(一∞,+∞)上连续且严格单调增加,又设则φ(x)在区间(一∞,+∞)上( )
admin
2016-04-14
40
问题
设f(x)在区间(一∞,+∞)上连续且严格单调增加,又设
则φ(x)在区间(一∞,+∞)上( )
选项
A、严格单调减少.
B、严格单调增加.
C、存在极大值点.
D、存在极小值点.
答案
B
解析
令上式分子为
Ф(x)=(x—a)f(x)一∫
a
x
f(t)dt
=(x一a)f(x)一(x一a)f(ξ)
=(x—a)[f(x)一f(ξ)],
其中,当a<x时,a<ξ<x,从而f(ξ)<f(x);当a>x时,a>ξ>x,从而f(ξ)>f(x).所以不论a<x还是a>x,总有Ф(x)>0.所以当x≠a时φ’(x)>0.从而知在区间(一∞,a)与(a,+∞)上φ(x)均为严格单调增加.
以下证明在区间(一∞,+∞)上φ(x)也是严格单调增加.事实上,设x
2
∈(a,+∞),则
其中a<ξ
2
<x
2
<+∞,此ξ
2
可取在开区间(a,x
2
)内.
同理,设x
1
∈(一∞,a),则有
φ(x)一φ(x
1
)=f(a)一f(ξ
1
)>0,
其中一∞<x
1
<ξ
1
<a.合并以上两个不等式,有φ(x
2
)一φ(x
1
)>0.
转载请注明原文地址:https://kaotiyun.com/show/7uw4777K
0
考研数学一
相关试题推荐
设函数f(x)在[0,1]上连续,在(0,1)内二阶可导,x=1是f(x)的极值点且3∫01/3f(x)dx=f(1/2)。证明:存在ξ∈(0,1),使得f’’(ξ)=0。
设a,Aa,A2a线性无关,且3Aa-2A2a-A3a=0,其中A为3阶矩阵,a为3维列向量求A的特征值与特征向量;
设向量=(1,1,﹣1)T是A=的一个特征向量判断A是否相似于对角矩阵,说明理由
设矩阵Am×n,r(A)=m<n,Em为m阶单位矩阵,下述结论中正确的是().
已知fn(x)满足f’n(x)=fn(x)+xn-1ex(n为正整数),且fn(1)=e/n,求函数项级数fn(x)之和.
被积函数为幂函数与指数函数的乘积,因此采用分部积分法,将幂函数看作u[*]
设D是由曲线y=(0≤x≤1)与(0≤t≤π/2)所围成的平面区域,求D绕x轴旋转一周所得旋转体的体积和表面积.
设A是n阶矩阵,下列结论正确的是().
设y=ex,求dy和d2y:(1)x为自变量;(2)x=x(t),t为自变量,x(t)二阶可导.
设随机变量X服从参数为(2,p)的二项分布,随机变量y服从参数为(3,p)的二项分布,若P丨x≥1丨=5/9,则P丨Y≥1丨=_________.
随机试题
中外领导人的专职秘书财务辅助的范围
关于初产妇第一产程宫口扩张曲线说法正确的是
根据我国施工合同示范文本,下列各项中不属于设计变更的是()
()负责制定、定期审查和监督落实银行业消费者权益保护工作的措施、程序以及具体的操作规程,推动银行业消费者权益保护工作积极、有序开展。
公安机关是刑事诉讼中的审查机关。()
1.2015年年底至2016年4月期间,刚刚搬到新校址的某外国语学校部分学生不断出现各种不良反应和疾病。学生家长调查发现,学校北面有一片工地,原本有三家化工厂,化工厂生产的大量氯苯、环芳烃、汞、镉等污染物严重超标,导致所在地块成为“毒地”。近年来
以下关于英美背景知识描述有误的一项是()。
"Youneedanapartmentaloneevenifit’soveragarage,"declaredHelenGurleyBrowninher1962bestseller"SexandtheSingle
(36)一经各方商定同意纳入经济合同中,就成为各方必须共同遵守的技术依据,具有法律上的约束性。
In1957adoctorinSingaporenoticedthathospitalsweretreatinganunusualnumberofinfluenza-likecases.Influenzaissomet
最新回复
(
0
)