首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间(一∞,+∞)上连续且严格单调增加,又设则φ(x)在区间(一∞,+∞)上( )
设f(x)在区间(一∞,+∞)上连续且严格单调增加,又设则φ(x)在区间(一∞,+∞)上( )
admin
2016-04-14
65
问题
设f(x)在区间(一∞,+∞)上连续且严格单调增加,又设
则φ(x)在区间(一∞,+∞)上( )
选项
A、严格单调减少.
B、严格单调增加.
C、存在极大值点.
D、存在极小值点.
答案
B
解析
令上式分子为
Ф(x)=(x—a)f(x)一∫
a
x
f(t)dt
=(x一a)f(x)一(x一a)f(ξ)
=(x—a)[f(x)一f(ξ)],
其中,当a<x时,a<ξ<x,从而f(ξ)<f(x);当a>x时,a>ξ>x,从而f(ξ)>f(x).所以不论a<x还是a>x,总有Ф(x)>0.所以当x≠a时φ’(x)>0.从而知在区间(一∞,a)与(a,+∞)上φ(x)均为严格单调增加.
以下证明在区间(一∞,+∞)上φ(x)也是严格单调增加.事实上,设x
2
∈(a,+∞),则
其中a<ξ
2
<x
2
<+∞,此ξ
2
可取在开区间(a,x
2
)内.
同理,设x
1
∈(一∞,a),则有
φ(x)一φ(x
1
)=f(a)一f(ξ
1
)>0,
其中一∞<x
1
<ξ
1
<a.合并以上两个不等式,有φ(x
2
)一φ(x
1
)>0.
转载请注明原文地址:https://kaotiyun.com/show/7uw4777K
0
考研数学一
相关试题推荐
已知存在且不为零,其充要条件是常数P=___________,此时该极限值为____________.
设向量组α1,α2,…,αm和向量组β1,β2,…,βt的秩相同,则正确结论的个数是().①两向量组等价.②两向量组不等价.③若t=m,则两向量组等价.④若两向量组等价,则t=m.⑤若α1,α2,…,αm可由β1,
设F(u,v)具有一阶连续偏导数,且z=z(x,y)由方程F(,yz)=0所确定.又设题中出现的分母不为零,则()
已知函数z=u(χ,y)eaχ+by,且,若z=z(χ,y)满足方程+z=0,则a=_______,b=_______.
过点P(0,-1/2)作抛物线y=的切线,该切线与抛物线及x轴围成的平面区域为D,求该区域分别绕x轴和y轴旋转而成的体积.
设f(u)为u的连续函数,并设f(0)=a>0.又设平面区域σ1={(x,y)||x|﹢|y|≤t,t≥0},Ф(t)=f(x2﹢y2dxdy.则Ф(t)在t=0处的右导数Ф’﹢﹢(0)=()
设函数,其中函数φ具有二阶导数,ψ具有一阶导数,则必有().
设函数f(x)在[a,b]上连续,且f(x)>0,则方程∫axf(t)dt+∫bxdt=0在开区间(a,b)内根的个数为().
以y=C1ex+C2cos2x+C3sin2x为通解的常系数齐次线性微分方程可以为()
设(x,y)=则f(x,y)在点(0,0)处()
随机试题
仓库火灾事故发生后,公司总经理李先生立即决定将储物室作为临时仓库使用。李先生的这种决策更加倾向于()
姜黄入药部位为
异烟肼对生长旺盛的活动期结核杆菌有强大的杀灭作用,是治疗活动性肺结核的首选药物。()
英国两艘来中国运送货物的货轮在大连港相撞,双方就损害赔偿数额未达成一致,于是向我国大连海事法院提起诉讼,则我国法院在审理该争议时()
甲公司发生的下列非关联方交换中,属于非货币性资产交换的有()。
根据我国《民法总则》的规定,()以上,可以独立实施民事法律行为,为完全民事行为能力人。
CRM能降低销售成本,原因是减少了销售人员。
教育理念
冷战
About10yearsagoImetanadvertisingexecutiveinNewYorkwhoexplainedthedifficultyofadvertisinganewbrandofdeodora
最新回复
(
0
)