首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量β可由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则( )
设向量β可由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则( )
admin
2021-01-25
40
问题
设向量β可由向量组α
1
,α
2
,…,α
m
线性表示,但不能由向量组(Ⅰ):α
1
,α
2
,…,α
m-1
线性表示,记向量组(Ⅱ):α
1
,α
2
,…,α
m-1
,β,则( )
选项
A、α
m
不能由(Ⅰ)线性表示,也不能由(Ⅱ)线性表示.
B、α
m
不能由(Ⅰ)线性表示,但可由(Ⅱ)线性表示.
C、α
m
可由(Ⅰ)线性表示,也可由(Ⅱ)线性表示.
D、α
m
可由(Ⅰ)线性表示,但不可由(Ⅱ)线性表示.
答案
B
解析
由题设条件,存在常数k
1
,k
2
,…,k
m
使得
k
1
α
1
+k
2
α
2
+…+k
m
α
m
=β (*)
且必有k
m
≠0(否则k
m
=0,则由上式知β可由(Ⅰ)线性表示,这与已知条件矛盾).于是得
即α
m
可由(Ⅱ)线性表示.
另一方面,如果α
m
可由(Ⅰ)线性表示:
α
m
=λ
1
α
1
+λ
2
α
2
+…+λ
m-1
α
m-1
将上式代入(*)式,则得
β=(k
1
+k
m
λ
1
)α
1
+(k
2
+k
m
λ
2
)α
2
+…+(k
m-1
+k
m
λ
m-1
)α
m-1
即β可由(Ⅰ)线性表示,这与已知条件矛盾,故α
m
不能由(Ⅰ)线性表示.
综合以上两方面的结果,即知B正确.
转载请注明原文地址:https://kaotiyun.com/show/7ux4777K
0
考研数学三
相关试题推荐
[2006年]设总体X的概率密度为其中θ(0<θ<1)是未知参数,X1,X2,…,Xn为来自总体X的简单随机样本.记N为样本值x1,x2,…,xn中小于1的个数.求:θ的最大似然估计.
(10年)设二维随机变量(X,Y)的概率密度为f(χ,y)=A,-∞<χ<+∞,-∞<y<+∞,求常数A及条件概率密度fY|X(y|χ).
(05年)设二维随机变量(X,Y)的概率密度为求:(Ⅰ)(X,Y)的边缘概率密度fX(χ),fY(Y);(Ⅱ)Z=2X-Y的概率密度fZ(Z);(Ⅲ)
连续函数f(x)满足f(x)=3∫0xf(x—t)dt+2,则f(x)=__________.
二次型f(x1,x2,x3)=xTAx=2x22+2x32+4x1x2+8x2x3—4x1x3的规范形是________。
设矩阵A满足A2+A-4E=0,其中E为单位矩阵,则(A-E)-1=_______.
假设二次型f(x1,x2,x3)=(x+ax2-2x3)2+(2x2+3x3)2+(x1+3x2+ax3)2正定,则a的取值为_____.
设函数f(u)可微,且f’(2)=2,则z=f(x2+y2)在点(1,1)处的全微分dz=________。
求极限
下列选项中矩阵A和B相似的是()
随机试题
证券经纪业务的特点有()。 Ⅰ.业务对象的选择性Ⅱ.证券经纪商的中介性 Ⅲ.客户指令的权威性Ⅳ.客户资料的保密性
十二指肠球部可见直径约1cm的圆形溃疡,不符合该患者疾病的描述是
A.薤白B.青木香C.川楝子D.沉香E.乌药
慢性肺源性心脏病导致的心脏形态改变是
建设工程代理行为的终止情形主要包括()。
为了保证企业组织结构正常运行,院长应在各项管理制度和方法设计从形式上分为( )。该设计院的组织文化建设,同时从组织文化结构的层次入手,取得了初步成效,下列关于组织文化的表述正确的是( )。
下列关于确定负债或企业自身权益工具公允价值的方法的说法中,不正确的是()。
使用书面法进行绩效评估的缺点在于()。
收容教育的对象是()。
责任分散效应也称为旁观者效应,是指对某一件事来说,如果是单个个体被要求单独完成任务,责任感就会很强,会作出积极的反应。但如果是要求一个群体共同完成任务,群体中的每个个体的责任感就会很弱,面对困难或遇到责任往往会退缩。因为前者独立承担责任,后者期望别人多承担
最新回复
(
0
)