首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1990年)设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减小,f(0)=0,试应用拉格朗日中值定理证明不等式 f(a+b)≤f(a)+f(b) 其中a、b满足条件0≤a≤b≤a+b≤c.
(1990年)设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减小,f(0)=0,试应用拉格朗日中值定理证明不等式 f(a+b)≤f(a)+f(b) 其中a、b满足条件0≤a≤b≤a+b≤c.
admin
2019-05-11
55
问题
(1990年)设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减小,f(0)=0,试应用拉格朗日中值定理证明不等式
f(a+b)≤f(a)+f(b)
其中a、b满足条件0≤a≤b≤a+b≤c.
选项
答案
要证f(a+b)≤f(a)+f(b),就是要证明f(a+b)一f(a)一f(b)≤0. 又f(0)=0,所以,只要证明f(a+b)一f(a)一f(b)+f(0)≤0. 而f(a+b)一f(a)一f(b)+f(0)=[f(a+b)一f(b)]一[f(a)一f(0)] =f’(ξ
2
)a一f’(ξ
1
)n=a[f’(ξ
2
)一f’(ξ
1
)] 0≤ξ
1
≤a,b≤ξ
2
≤a+b 又f’(x)单调减少,则f’(ξ
2
)≤f’(ξ
1
),从而有f(a+b)一f(a)一f(b)+f(0)≤0. 故 f(a+b)≤f(a)+f(b)
解析
转载请注明原文地址:https://kaotiyun.com/show/FBJ4777K
0
考研数学三
相关试题推荐
设f(xin2)==______.
设随机变量X的分布律为X~,则Y=X2+2的分布律为______.
设f(x)在(-a,a)(a>0)内连续,且f’(0)=2.(1)证明:对0<x<a,存在0<θ<1,使得∫0xf(t)dt+∫0-xf(t)dt=x[f(θx)-f(-θx)];(2)求.
甲、乙两人从1,2,…,15中各取一个数,设甲取到的数是5的倍数,求甲数大于乙数的概率.
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
设随机变量X,Y相互独立且都服从N(μ,σ2)分布,令Z=max(X,Y),求E(Z).
设总体X~N(μ,σ2),X1,X2,…,Xn+1为总体X的简单随机样本,记服从的分布.
设曲线y=ax2(x≥0,常数a>0)与曲线y=1一x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形D.求(Ⅰ)D绕x轴旋转一周所成的旋转体的体积V(a);(Ⅱ)a为何值时,V(a)取到最大值?
[2005年]以下四个命题中正确的是().
(1987年)若f(x)在(a,b)内可导且a<x1<x2<b,则至少存在一点ξ,使得()
随机试题
男性患者,65岁,间歇性全程无痛肉眼血尿1个月。膀胱镜检发现左输尿管口喷血。IVP示左肾盂充盈缺损。应采取何种治疗措施
下列各项,不属于肺痨主症的是
《道路交通安全法》规定,抢救受伤人员的抢救费用超过保险公司责任限额的,未参加机动车第三者责任强制保险或者肇事后逃逸的,由()先行垫付部分或者全部抢救费用。
下列对于胸大肌的表述正确的是()。
某学校一位实习老师,教数学。他上课很有趣,但对学生很严格,如果有上黑板演示题目做不出题,就会骂人。最严重的一次是,一个学习不好的男同学被教了好几次还做不对,他一怒之下就把人家的头往黑板上撞,用非常粗俗的话骂他。那个男生受不了这样的刺激,最后厌学,不肯再读书
【伊达尔哥】北京大学2002年世界通史真题
现在可以使用()来编写Web页面。
设f(x)在[0,1]上可导,f(0)=0,|f’(x)|≤|f(x)|.证明:f(x)≡0,x∈[0,1].
在考生文件夹下有一个数据库文件“samp2.accdb”,里面已经设计好3个关联表对象“tStud”、“tCourse”、“tScore”和表对象“tTemp”。请按以下要求完成设计。创建一个选择查询,查找并显示没有摄影爱好的学生的“学号”、“姓名”、
定义了二维数组A(1to6,6),则该数组的元素个数为()。
最新回复
(
0
)