首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1990年)设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减小,f(0)=0,试应用拉格朗日中值定理证明不等式 f(a+b)≤f(a)+f(b) 其中a、b满足条件0≤a≤b≤a+b≤c.
(1990年)设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减小,f(0)=0,试应用拉格朗日中值定理证明不等式 f(a+b)≤f(a)+f(b) 其中a、b满足条件0≤a≤b≤a+b≤c.
admin
2019-05-11
45
问题
(1990年)设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减小,f(0)=0,试应用拉格朗日中值定理证明不等式
f(a+b)≤f(a)+f(b)
其中a、b满足条件0≤a≤b≤a+b≤c.
选项
答案
要证f(a+b)≤f(a)+f(b),就是要证明f(a+b)一f(a)一f(b)≤0. 又f(0)=0,所以,只要证明f(a+b)一f(a)一f(b)+f(0)≤0. 而f(a+b)一f(a)一f(b)+f(0)=[f(a+b)一f(b)]一[f(a)一f(0)] =f’(ξ
2
)a一f’(ξ
1
)n=a[f’(ξ
2
)一f’(ξ
1
)] 0≤ξ
1
≤a,b≤ξ
2
≤a+b 又f’(x)单调减少,则f’(ξ
2
)≤f’(ξ
1
),从而有f(a+b)一f(a)一f(b)+f(0)≤0. 故 f(a+b)≤f(a)+f(b)
解析
转载请注明原文地址:https://kaotiyun.com/show/FBJ4777K
0
考研数学三
相关试题推荐
设f(x)在[0,1]上可导,f(0)=0,|f’(x)|≤|f(x)|.证明:f(x)≡0,x∈[0,1].
若由曲线y=,曲线上某点处的切线以及x=1,x=3围成的平面区域的面积最小,则该切线是().
设f(x,y)=(1)f(x,y)在点(0,0)处是否连续?(2)f(x,y)在点(0,0)处是否可微?
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(I)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5-α4的秩为4.
设有微分方程y’-2y=φ(x),其中φ(x)=,在(-∞,+∞)求连续函数y(x),使其在(-∞,1)及(1,+∞)内都满足所给的方程,且满足条件y(0)=0.
求函数f(x)=ln(1-x-2x2)的幂级数,并求出该幂级数的收敛域.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)求矩阵A的特征值;(2)判断矩阵A可否对角化.
设=c(≠0),求n,c的值.
(2004年)设f(x)在(一∞,+∞)内有定义,且=a,g(x)=则()
[2005年]当a取下列哪个值时,函数f(x)=2x3-9x2+12x一a恰好有两个不同的零点?()
随机试题
()文明表现为人类物质生产的进步和物质生活的改善。
法人能否成为特定经济法律关系的主体,取决于其()
下列表述不正确的一项是()
标准正态分布曲线下中间90%的面积所对应的横轴尺度u的范围是
女性,35岁,步行中后仰跌倒,右手掌撑地伤后1小时,右肩痛,不敢活动。查体:右肩呈方肩畸形,Dugas征(+)。最常见的合并损伤是
乳腺癌的发病因素中不包括
无支护加固坑壁的基坑开挖的条件是()。
股票的清算价格是()。
OneSundaymorning,MillieandAmywenttoSunshinePark.Theylovetochatthere.Asusual,theysat【C1】______abigtree.Sudde
结合实际情况,如何理解课堂中的问题行为,应该怎样正确对待?
最新回复
(
0
)