首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1990年)设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减小,f(0)=0,试应用拉格朗日中值定理证明不等式 f(a+b)≤f(a)+f(b) 其中a、b满足条件0≤a≤b≤a+b≤c.
(1990年)设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减小,f(0)=0,试应用拉格朗日中值定理证明不等式 f(a+b)≤f(a)+f(b) 其中a、b满足条件0≤a≤b≤a+b≤c.
admin
2019-05-11
58
问题
(1990年)设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减小,f(0)=0,试应用拉格朗日中值定理证明不等式
f(a+b)≤f(a)+f(b)
其中a、b满足条件0≤a≤b≤a+b≤c.
选项
答案
要证f(a+b)≤f(a)+f(b),就是要证明f(a+b)一f(a)一f(b)≤0. 又f(0)=0,所以,只要证明f(a+b)一f(a)一f(b)+f(0)≤0. 而f(a+b)一f(a)一f(b)+f(0)=[f(a+b)一f(b)]一[f(a)一f(0)] =f’(ξ
2
)a一f’(ξ
1
)n=a[f’(ξ
2
)一f’(ξ
1
)] 0≤ξ
1
≤a,b≤ξ
2
≤a+b 又f’(x)单调减少,则f’(ξ
2
)≤f’(ξ
1
),从而有f(a+b)一f(a)一f(b)+f(0)≤0. 故 f(a+b)≤f(a)+f(b)
解析
转载请注明原文地址:https://kaotiyun.com/show/FBJ4777K
0
考研数学三
相关试题推荐
设f(x)在(-∞,+∞)上有定义,且对任意的x,y∈(-∞,+∞)有|f(x)-f(y)|≤|x-y|.证明:|∫abf(x)dx-(b-a)f(a)|≤(b-a)2.
设f(x)在[-1,1]上可导,f(x)在x=0处二阶可导,且f’(0)=0,f’’(0)=4.求.
电话公司有300台分机,每台分机有6%的时间处于与外线通话状态,设每台分机是否处于通话状态相互独立,用中心极限定理估计至少安装多少条外线才能保证每台分机使用外线不必等候的概率不低于0.95?
设随机变量X的概率密度为fX(x)=,求Y=eX的概率密度fY(y).
设y(x)是微分方程y’’+(x-1)y’+x2y=ex满足初始条件y(0)=0,y’(0)=1的解,则().
证明:(1)设an>0,且{nan}有界,则级数an2收敛;(2)n2an=k>0,则级数an收敛.
设随机变量X满足|X|≤1,且P(X=-1)=,P(X=1)=,在{-1<x<1}发生的情况下,X在(-1,1)内任一子区间上的条件概率与该子区间长度成正比.(1)求X的分布函数;(2)求P(X<0).
设某元件的使用寿命X的概率密度为f(x;θ)=其中θ>0为未知参数.又设(x1,x2,…,xn)是样本(X1,X2,…,Xn)的观察值,求参数θ的最大似然估计值.
(2004年)设有以下命题:则以上命题中正确的是()
(2004年)设f(x)在(一∞,+∞)内有定义,且则()
随机试题
男性,65岁,剧烈咳嗽后突然出现左胸刀割样疼痛,觉气促、不能平卧。查体:左侧胸廓稍饱满,左侧触觉语颤减弱,左肺叩诊鼓音,呼吸音较右肺明显减弱。该患者最合适的处理是
先天性巨痣在哪个年龄段出现
光化学烟雾氮氧化物
A、发热伴胸腹部玫瑰疹B、发热伴盗汗、消瘦、乏力C、发热伴右上肢痛、黄疸D、发热伴腰痛、尿频E、发热伴头痛、喷射性呕吐、颈项强直急性胆囊炎出现
所谓( ),是指选定一种投资风格后,不论市场发生何种变化均不改变这一选定的投资风格。
根据教师发展的五阶段理论,教师发展的基本目标是达到()。
2016年9月27日,中共中央政治局召开会议,研究全面从严治党重大问题。会议强调,必须:
设函数其中g(x)二阶连续可导,且g(0)=1.讨论f’(x)在x=0处的连续性。
Whenyouarelookingforwork,youmayoccasionallyfeelrejected.Butbearinmindthatsomebodyoutthereisjustasanxioust
【B1】【B5】
最新回复
(
0
)