首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X服从(0,θ)(θ>0)上的均匀分布,x1,x2,…,xn是来自总体x样本,求θ的最大似然估计量与矩估计量.
设总体X服从(0,θ)(θ>0)上的均匀分布,x1,x2,…,xn是来自总体x样本,求θ的最大似然估计量与矩估计量.
admin
2013-09-03
93
问题
设总体X服从(0,θ)(θ>0)上的均匀分布,x
1
,x
2
,…,x
n
是来自总体x样本,求θ的最大似然估计量与矩估计量.
选项
答案
(Ⅰ)总体X的密函数是f(x,θ)=[*] 似然函数是L(0;x
1
,x
2
,x
n
)=[*] 记x
(n)
=max{x
i
}. 当θ≤x
(n)
时,L(θ)是单调减小函数,所以当θ=x
(n)
=[*],L(0;x
1
,x
2
,…,x
n
)最大. 所以[*]是θ的最大似然估计量. (Ⅱ)因为E(X)=[*] 令[*],所以θ的矩阵估计量是[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/8D54777K
0
考研数学一
相关试题推荐
已知A是3阶实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Ax=0的解,又(A-6E)α=0,α≠0.求(A-3E)6.
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y21+y22,且Q的第3列为证明A+E为正定矩阵,其中E为3阶单位矩阵.
已知二次型f(x1,x2,x3)=4x22-3x23+4x1x2-4x1x3+8x2x3.写出二次型f的矩阵表达式;
设x=eacosv,y=eusinv,z=uv.试求
设,证明当n→∞时,数列{xn}极限存在,并求其值
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ)Ax=0和(Ⅱ)ATAx=0,必有()
设函数f(x)在x=0处可导,且f(0)=0,则=()
设函数在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明在(0,1)内方程f(x)=x有且仅有一个实根.
已知n维向量组α1,α2,…,αn中,前n-1个线性相关,后n-1个线性无关,若令β=α1+α2+…+αn,A=(α1,α2,…,αn).试证方程组Ax=β必有无穷多组解,且其任意解(α1,α2,…,αn)T中必有αn=1
设X1,X2,X3,X4是来自正态总体N(0,22)的简单随机样本,X=a(X1-2X2)2+b(3X3-4X4)2,则当a=__________,b=____________时,统计量X服从X2分布,其自由度为_____________.
随机试题
宜以水飞后入药的药物是
焊接时每道焊缝厚度一般不超过()。
广义储蓄包括
胃与十二指肠的连接部位是
可以合并用药的情况包括
护士遵医嘱为溃疡性结肠炎患者行保留灌肠治疗,应协助患者采取的体位是
根据《招标投标法》的有关规定,招标人和中标人应当自中标通知书发出之日起()日内,按照招标文件和中标人的投标文件订立书面合同。
明朝在朝官员“上言宰执大臣美政才德者”,构成()
设X1和X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)与f2(x),分布函数分别为F1(x)与F2(x),则
Readthearticlebelowaboutvideogamesmoveonlineandthequestionsontheoppositepage.Foreachquestion(13-18),markone
最新回复
(
0
)